

aw

WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation

Jongheon Jeong^{**}, Yang Zou^{*}, Taewan Kim, Dongqing Zhang, Avinash Ravichandran^{*}, Onkar Dabeer

Poster: THU-AM-297

* PhD student at KAIST, work done during internship at AWS AI Labs

* Equal contribution

* Work done in AWS AI Labs

WinCLIP - Preview

- WinCLIP: The first language-guided zero-shot anomaly recognition model
 - Use pre-trained CLIP model with *compositional prompt ensemble*
 - Aggregate multi-scale spatial features aligned with language
- WinCLIP+: The first language-guided few-shot anomaly recognition model
 - WinCLIP + vision-based reference association
- WinCLIP (zero-shot) even outperforms SOTA few-shot anomaly classification methods

Anomaly Classification & Segmentation for Visual Inspection

Query image

Anomaly Normal

Limited Generality Hinders Inspection at Scale

้ลพร

Many normal images for training on red screws

Scalable Visual Inspection with An Unified Model

An unified model with **zero-/few-normal-shot anomaly** recognition ability, requiring no tuning for each task

Hardware manufacturer

Electronics manufacturer

Car, fabric, ...

Principle 1: Language for Generalizable Anomaly Detection

• Language defines normality and anomaly that vary case by case

Normality: flawless/undamaged **Anomaly**: crack/scratch/...

Normality: fresh/uncontaminated **Anomaly**: mouldy/rotten/bitten/...

• We confirm this hypothesis with the CLIP

Principle 2: Multi-Scale Inspection for Comprehensive View

Window at small-scale

Window at mid-scale

Principle 3: Normal Image Clarifies Deviation from Normality

Query image

Normal reference image

WinCLIP for Zero-/One-Shot Anomaly Segmentation

• Window-based CLIP (WinCLIP)

Language Driven Zero-Shot Anomaly Classification

Compositional Prompt Ensemble

Efficient Window Feature Extraction via Maskable Inference

• Window based CLIP-ViT feature extraction

Window asWindow aspatch token arraymasked image

Patches within window

Multi-Scale Feature Extraction

Reference Association for Visual Anomaly

- 1. Construct a local feature bank **R** by collecting those extracted from normal samples
- 2. The local anomaly score is defined as distance to the feature bank (distance to nearest neighbor)

Quantitative Results

Qualitative Results: One-shot Anomaly Segmentation

Conclusion

- WinCLIP/WinCLIP+: a novel framework to define normality and anomaly with
 - Fine-grained text descriptions
 - Normal reference images
- CLIP pre-trained on large-scale web data provides a powerful representation
 - Alignment between texts and images for anomaly recognition
- Two-class design for zero-/few-shot anomaly recognition
 - Values complementary to standard one-class methods