

Confidence-aware Training of Smoothed Classifiers for Certified Robustness

Jongheon Jeong* Seojin Kim* Jinwoo Shin

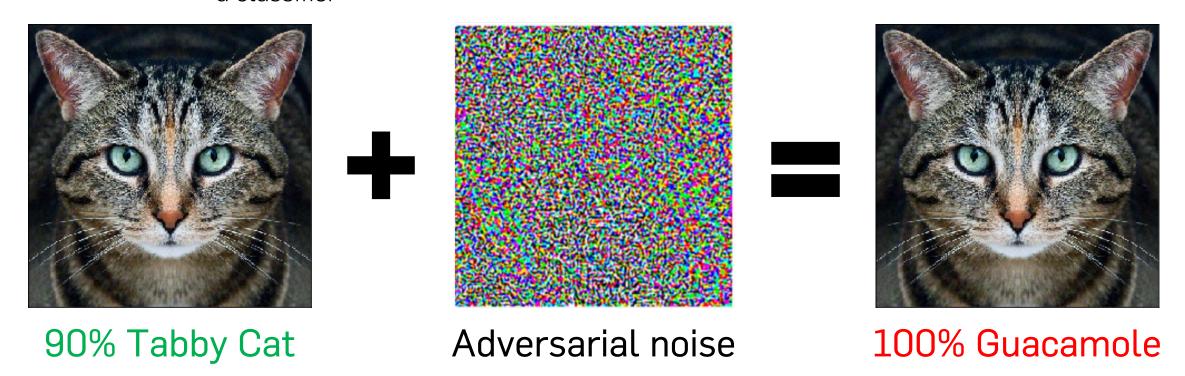
Korea Advanced Institute of Science and Technology (KAIST)

AAAI 2023

Adversarial Examples [Szegedy et al., 2013]

The existence of small, worst-case input noise that affects the output prediction

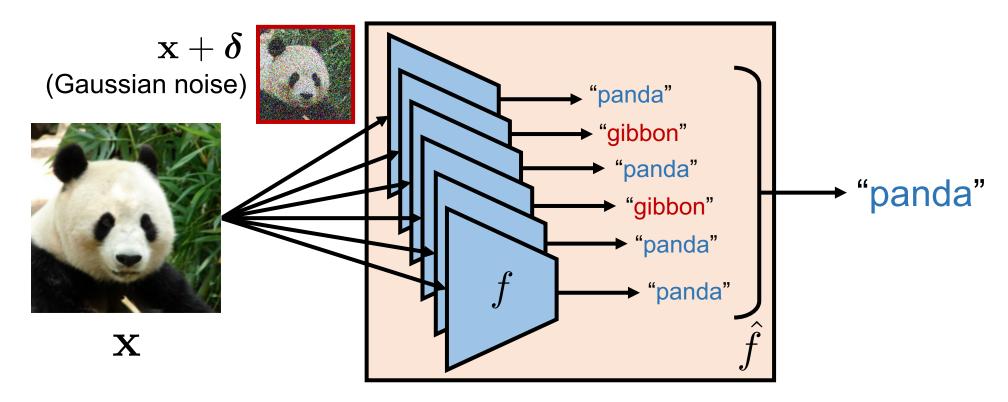
Goal:
$$f(\mathbf{x}) = f(\mathbf{x} + \boldsymbol{\delta}), \quad \forall \boldsymbol{\delta} : \|\boldsymbol{\delta}\|_2 \leq \varepsilon$$
 a classifier The hardest part



Randomized Smoothing [Cohen et al., 2019]

Idea: Construct a smoothed classifier \hat{f} from the base classifier f (e.g., a neural net)

$$\widehat{f}(\mathbf{x}) := \underset{k \in \mathcal{Y}}{\arg \max} \{ \mathbb{P}_{\underbrace{\boldsymbol{\delta} \sim \mathcal{N}(0, \sigma^2 I)}} (f(\mathbf{x} + \boldsymbol{\delta}) = k) \}$$
Gaussian noise

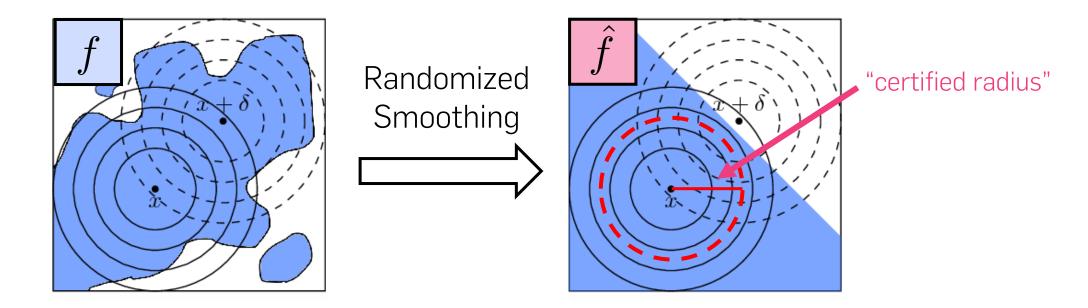


Randomized Smoothing [Cohen et al., 2019]

Idea: Construct a smoothed classifier \hat{f} from the base classifier f (e.g., a neural net)

$$\widehat{f}(\mathbf{x}) := \underset{k \in \mathcal{Y}}{\arg\max} \{ \mathbb{P}_{\underbrace{\boldsymbol{\delta} \sim \mathcal{N}(0, \sigma^2 I)}} (f(\mathbf{x} + \boldsymbol{\delta}) = k) \}$$
Gaussian noise

• Cohen et al. (2019): A provable guarantee on adversarial robustness of \hat{f} in terms of f



Why Randomized Smoothing (RS)?

Compared to the major criticisms on Adversarial Training (AT) [Madry et al., 2018]:

- Criticism 1: AT does not generalize to unseen adversaries
 - RS is attack-free, and can handle many adversaries at once [Mohapatra et al., 2020]

$$\min_{f} \mathbb{E}_{(\mathbf{x}, \mathbf{y})} \begin{bmatrix} \ell_2\text{-adversary} \\ \max_{\|\hat{\mathbf{x}} - \mathbf{x}\|_2 \leq \varepsilon} \mathcal{L}(\hat{\mathbf{x}}, \mathbf{y}; f) \end{bmatrix} \implies \min_{f} \mathbb{E}_{(\mathbf{x}, \mathbf{y})} \left[\mathbb{E}_{\boldsymbol{\delta}} \left[\mathcal{L}(\mathbf{x} + \boldsymbol{\delta}, \mathbf{y}; f) \right] \right]$$
Gaussian noise

- Criticism 2: AT cannot guarantee anything, i.e., it only gives empirical robustness
 - RS provides provable guarantees, even in sample-wise manner

How to Train Randomized Smoothing?

Randomized smoothing (RS) introduces a new problem:

(AT) "How to train f to maximize the robustness of f?"

(RS) "How to train f to maximize the robustness of \hat{f} ?"

• Gaussian [Cohen et al., 2019]: Training with Gaussian augmentation

$$L^{\mathtt{nat}} := \mathbb{E}_{\boldsymbol{\delta} \sim \mathcal{N}(0, \sigma^2 I)} \left[\mathbb{CE}(\mathbf{x} + \boldsymbol{\delta}, \mathbf{y}; f) \right]$$

- SmoothAdv [Salman et al., 2019]: Approximative adversarial training on \hat{f}
- MACER [Zhai et al., 2020]: Maximizing a soft approximation of certified radius
- Consistency [Jeong and Shin, 2020]: Consistency regularization improves RS
- SmoothMix [Jeong et al., 2021]: Confidence calibration towards adversarial, extrapolative noise

[Cohen et al., 2019] Certified adversarial robustness via randomized smoothing. ICML 2019.

[Salman et al., 2019] Provably robust deep learning via adversarially trained smoothed classifiers. NeurIPS 2019.

[Zhai et al., 2020] MACER: attack-free and scalable robust training via maximizing certified radius. ICLR 2020.

[Jeong and Shin, 2020] Consistency regularization for certified robustness of smoothed classifiers, NeurIPS 2020.

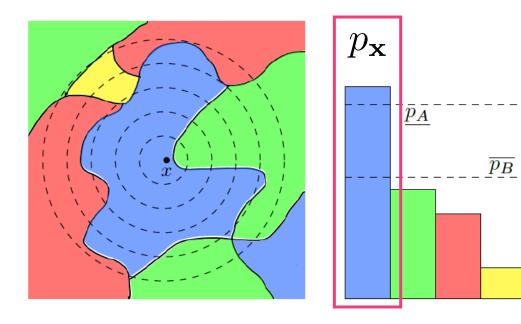
[Jeong et al., 2021] SmoothMix: Training confidence-calibrated smoothed classifiers for certified robustness, NeurIPS 2021.

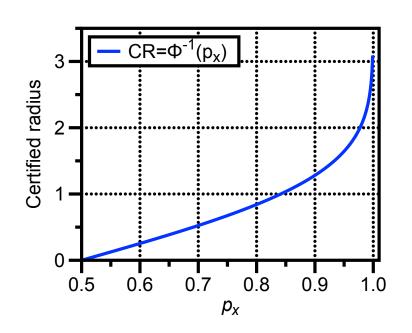
Motivation 1: Confidence vs. Robustness in RS

The prediction confidence $p_{\mathbf{x}}$ is positively correlated with the certified radius of $\hat{f}(\mathbf{x})$

<u>Theorem</u> Let $p_{\mathbf{x}} := \max_k \{ \mathbb{P}_{\boldsymbol{\delta}}(f(\mathbf{x} + \boldsymbol{\delta}) = k) \}$. Then, the ℓ_2 -robust radius of $\hat{f}(\mathbf{x})$ is lower-bounded by:

$$R(\hat{f}; \mathbf{x}) := \min_{\hat{f}(\mathbf{x} + \boldsymbol{\delta}) \neq \hat{f}(\mathbf{x})} \|\boldsymbol{\delta}\|_2 \ge \sigma \cdot \Phi^{-1}(\underline{p_{\mathbf{x}}})$$
Gaussian CDF

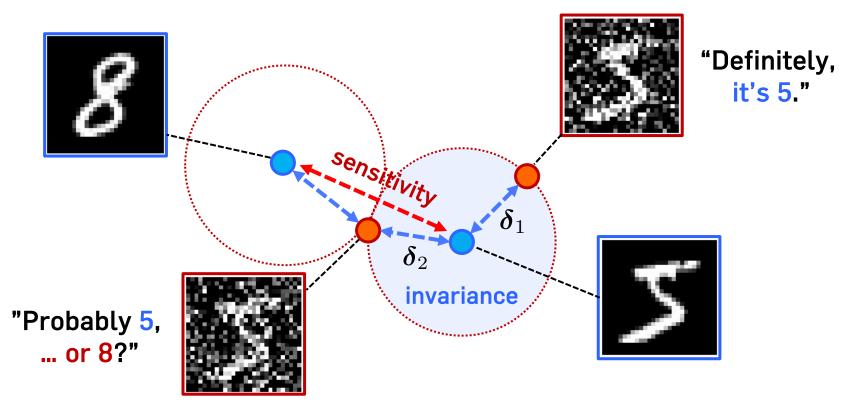




Motivation 2: Invariance vs. Sensitivity in RS

Invariance to Gaussian noise is often at a cost of model sensitivity [Tramer et al., 2020]

- In RS, the trade-off becomes severe depending on noise samples
 - ⇒ For some cases, achieving "high RS confidence" is challenging even for humans



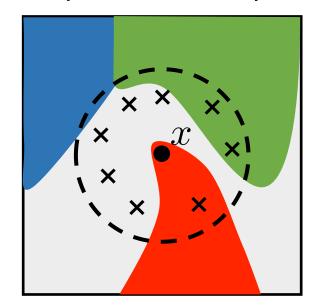
Confidence-Aware Training of RS (CAT-RS)

In some cases, achieving high RS confidence is fundamentally challenging

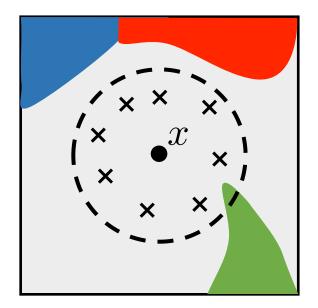
For such instances, the certified radius at "oracle" RS classifiers should be low

Confidence-aware re-design of the Gaussian training [Cohen et al., 2019] objective

Case 1: $p_x < 1$ (low confidence)



Case 2: $p_x \approx 1$ (high confidence)



Case 1: Low-confidence instances ($p_x < 1$)

Assumption: The decision boundary around x is sensitive to Gaussian noise

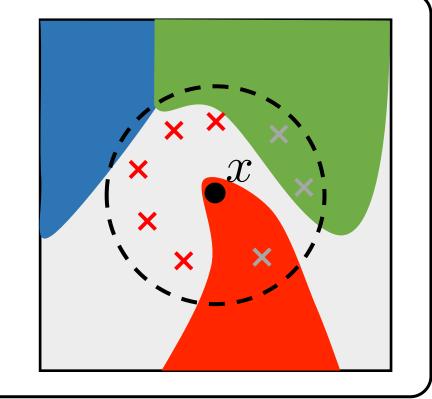
For some noise samples δ , $\mathbf{x} + \mathbf{\delta}$ is fundamentally "hard-to-classify"

Minimize the loss only for "top-K easiest" Gaussian samples

Bottom-*K* Gaussian objective:

• *M* noise samples: $\boldsymbol{\delta}_1, \cdots, \boldsymbol{\delta}_M \sim \mathcal{N}(0, \sigma^2 I)$

$$L^{ extstyle{low}} := rac{1}{M} \sum_{i=1}^{K} \mathbb{CE}(F(\mathbf{x} + oldsymbol{\delta}_{\pi(i)}), y), \ extstyle{ } exts$$



Case 2: High-confidence instances ($p_x \approx 1$)

Assumption: The decisions around x are invariant for most of Gaussian noise

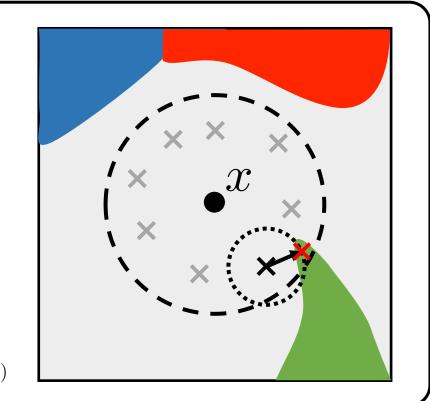
The standard Gaussian training may not fully cover "potentially hard" noises

Optimize each noise sample to generate "worst-case" Gaussian samples

Worst-case Gaussian objective:

• $extit{M}$ noise samples: $oldsymbol{\delta}_1,\cdots,oldsymbol{\delta}_M\sim\mathcal{N}(0,\sigma^2I)$

$$L^{\text{high}} := \max_{i} \frac{\text{KL}(F(\mathbf{x} + \boldsymbol{\delta}_{i}^{*}) \parallel \hat{\boldsymbol{y}})}{\text{KL}(F(\mathbf{x} + \boldsymbol{\delta}_{i}^{*}) \parallel \hat{\boldsymbol{y}})},$$
 where $\boldsymbol{\delta}_{i}^{*} := \underset{\|\boldsymbol{\delta}_{i}^{*} - \boldsymbol{\delta}_{i}\|_{2} \leq \varepsilon}{\text{arg max}} \frac{\text{KL}(F(\mathbf{x} + \boldsymbol{\delta}_{i}^{*}) \parallel \hat{\boldsymbol{y}})}{\text{A soft-label assignment}}.$ A soft-label assignment i.e.g., $\hat{\boldsymbol{y}} := \frac{1}{M} \sum_{i} F(\mathbf{x} + \boldsymbol{\delta}_{i})$



Overall Training Scheme: CAT-RS

CAT-RS differently applies L^{low} and L^{high} sample-wise using M Gaussian noises

How to decide which objective to use per sample?

A simple masking condition "K = M": i.e., when L^{low} covers the full noise samples

$$L^{\operatorname{CAT-RS}} := L^{\operatorname{low}} + \lambda \cdot \mathbb{1}[K = M] \cdot L^{\operatorname{high}}$$

Bottom-*K* Gaussian objective:

$$L^{ exttt{low}} := rac{1}{M} \sum_{i=1}^K \mathbb{CE}(F(\mathbf{x} + oldsymbol{\delta}_{\pi(i)}), y), \qquad L^{ exttt{high}} := \max_i \ \mathrm{KL}(F(\mathbf{x} + oldsymbol{\delta}_i^*) \parallel \hat{y}),$$

where $K \sim \text{Bin}(M, \hat{p}_{\mathbf{x}})$.

Worst-case Gaussian objective:

$$L^{\text{high}} := \max_{i} \text{ KL}(F(\mathbf{x} + \boldsymbol{\delta}_{i}^{*}) \parallel \hat{y}),$$

where
$$\boldsymbol{\delta}_i^* := \underset{\|\boldsymbol{\delta}_i^* - \boldsymbol{\delta}_i\|_2 \leq \varepsilon}{\arg \max} \operatorname{KL}(F(\mathbf{x} + \boldsymbol{\delta}_i^*) \parallel \hat{y}).$$

Experiments

We compare CAT-RS with existing methods for training robust RS

- 1. CAT-RS consistently obtains state-of-the-art certified robustness on diverse benchmarks
 - CIFAR-10/100, ImageNet, MNIST, Fashion-MNIST
- 2. The effectiveness of CAT-RS generalizes to corruption robustness, e.g., CIFAR-10-C, MNIST-C
- 3. An extensive ablation study confirms the individual effectiveness of proposed components

Evaluation metrics

- 1. Certified test accuracy @ radius r [Cohen et al., 2019]
 - % test dataset that (a) $\hat{f}(x)=y$, and (b) $\mathrm{CR}(f,\sigma,x):=\sigma\cdot\Phi^{-1}(p_A)>r$
- 2. Average certified radius (ACR) [Zhai et al., 2020]

$$ACR := \frac{1}{|\mathcal{D}_{\mathsf{test}}|} \sum_{(x,y) \in \mathcal{D}_{\mathsf{test}}} CR(f,\sigma,x) \cdot \mathbf{1}_{\hat{f}(x)=y}$$

Experiments: Results on CIFAR-10

CAT-RS achieves new SOTA ACRs, exhibiting a better robustness trade-off

σ	Methods	ACR	0.00	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50
0.25	Gaussian	0.424	76.6	61.2	42.2	25.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Stability	0.420	73.0	58.9	42.9	26.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	SmoothAdv	0.544	73.4	65.6	57.0	47.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	MACER	0.531	<u>79.5</u>	69.0	55.8	40.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Consistency	0.552	75.8	67.6	58.1	46.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	SmoothMix	0.553	77.1	67.9	57.9	46.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	CAT-RS (Ours)	<u>0.562</u>	76.3	<u>68.1</u>	<u>58.8</u>	<u>48.2</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Gaussian	0.525	65.7	54.9	42.8	32.5	22.0	14.1	8.3	3.9	0.0	0.0	0.0
	Stability	0.531	62.1	52.6	42.7	33.3	23.8	16.1	9.8	4.7	0.0	0.0	0.0
	SmoothAdv	0.684	65.3	<u>57.8</u>	49.9	41.7	33.7	26.0	19.5	12.9	0.0	0.0	0.0
0.50	MACER	0.691	64.2	57.5	49.9	42.3	34.8	27.6	20.2	12.6	0.0	0.0	0.0
	Consistency	0.720	64.3	57.5	<u>50.6</u>	43.2	36.2	29.5	22.8	16.1	0.0	0.0	0.0
	SmoothMix	0.737	61.8	55.9	49.5	43.3	37.2	31.7	25.7	19.8	0.0	0.0	0.0
	CAT-RS (Ours)	0.757	62.3	56.8	50.5	<u>44.6</u>	<u>38.5</u>	<u>32.7</u>	<u>27.1</u>	<u>20.6</u>	0.0	0.0	0.0
	Gaussian	0.511	47.1	40.9	33.8	27.7	22.1	17.2	13.3	9.7	6.6	4.3	2.7
	Stability	0.514	43.0	37.8	32.5	27.5	23.1	18.8	14.7	11.0	7.7	5.2	3.1
	SmoothAdv	0.790	43.7	40.3	36.9	33.8	30.5	27.0	24.0	21.4	18.4	15.9	13.4
1.00	MACER	0.744	41.4	38.5	35.2	32.3	29.3	26.4	23.4	20.2	17.4	14.5	12.1
	Consistency	0.756	46.3	<u>42.2</u>	<u>38.1</u>	<u>34.3</u>	30.0	26.3	22.9	19.7	16.6	13.8	11.3
	SmoothMix	0.773	45.1	41.5	37.5	33.8	30.2	26.7	23.4	20.2	17.2	14.7	12.1
	CAT-RS (Ours)	0.815	43.2	40.2	37.2	<u>34.3</u>	<u>31.0</u>	<u>28.1</u>	<u>24.9</u>	<u>22.0</u>	<u>19.3</u>	<u>16.8</u>	<u>14.2</u>

Comparison of ACR and certified accuracy on CIFAR-10 (ResNet-110, $\sigma \in \{0.25, 0.5, 1.0\}$)

Experiments: ImageNet and ℓ_{∞} -robustness

CAT-RS also successfully scales up to certify on large-scale ImageNet

Methods	ACR	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5
Gaussian (Cohen et al. 2019)	0.875	44	38	33	26	19	15	12	9
Consistency (Jeong and Shin 2020)	0.982	41	37	32	28	24	21	17	14
SmoothAdv (Salman et al. 2019)	1.003	40	37	<u>34</u>	<u>30</u>	27	25	20	15
SmoothMix (Jeong et al. 2021)	1.047	40	37	<u>34</u>	<u>30</u>	<u>26</u>	<u>24</u>	20	17
CAT-RS (Jeong et al. 2022)	1.071	44	38	35	31	27	<u>24</u>	20	17

Results on ImageNet (ResNet-50, $\sigma = 0.5$)

CAT-RS can also provides superior certification against ℓ_{∞} -adversaries

Similarly, RS is capable to provide other types of robustness certification [Mohapatra et al., 2020]

CIFAR-10 (ℓ_{∞})	Gaussian	Stability	SmoothAdv	MACER	Consistency	SmoothMix	CAT-RS
Clean ($\varepsilon = 0$)	76.6	73.0	73.4	79.5	75.8	77.1	76.3
Robust ($\varepsilon = \frac{2}{255}$)	47.8	47.0	59.1	59.7	60.7	60.7	61.4

Certified accuracy against ℓ_{∞} -adversary on CIFAR-10 (ResNet-110, $\sigma=0.25$)

Experiments: Results on CIFAR-10-C

CAT-RS can improve RS to further generalize on unseen corruptions

- Achieves the best ACRs on all the corruption types, as well as mean accuracy (mAcc)
- The observed gains are not from any prior knowledge about target corruptions

				. 24		cd.	rix Our	(s)				794		Kor	Mix
Type	Gaussia	n Stability	Smooth	MACE	Consist	Smooth	Mix CAT.RS OU	Туре	Gaussi	lan Stabili	ity Smoot	hAdv MAC	ER Consis	Smoot	thive CAT.
Gaussian	0.412	0.348	0.506	0.473	0.505	0.513	0.544	Clean	76.6	73.0	73.4	79.5	75.8	77.1	76.3
Shot	0.414	0.350	0.503	0.472	0.503	0.508	0.542	Gaussian	70.8	64.6	70.2	72.6	69.8	73.4	76.8
Impulse	0.389	0.322	0.495	0.452	0.492	$\overline{0.499}$	0.530	Shot	70.0	65.6	68.4	72.8	69.6	72.6	76.6
Defocus	0.372	0.329	0.480	0.442	0.482	$\overline{0.489}$	0.512	Impulse	70.2	61.6	69.0	74.0	70.4	73.6	75.6
Glass	0.343	0.291	0.473	0.415	0.472	$\overline{0.483}$	0.505	Defocus	64.8	65.4	68.4	<u>71.2</u>	69.2	70.6	74.2
Motion	0.352	0.314	0.458	0.417	0.465	$\overline{0.474}$	0.492	Glass	65.2	62.0	68.6	71.6	69.0	<u>72.0</u>	72.8
Zoom	0.346	0.315	0.468	0.420	0.462	$\overline{0.476}$	0.501	Motion	66.2	62.4	67.2	72.2	70.8	69.6	<u>71.6</u>
Snow	0.346	0.325	0.452	0.417	0.448	$\overline{0.438}$	0.487	Zoom	65.2	64.2	65.6	70.6	68.4	$\frac{71.4}{60.2}$	75.4
Frost	0.298	0.298	$\overline{0.434}$	0.377	0.401	0.403	0.434	Snow	67.0	64.6	64.0	$\frac{70.8}{60.0}$	67.0	69.2	71.4
Fog	0.197	0.153	0.279	0.266	0.277	0.262	0.293	Frost	65.6	63.0	64.0	<u>69.0</u>	66.8	70.2	67.8
Bright	0.378	0.366	$\overline{0.487}$	0.451	0.489	0.478	0.524	Fog	52.4	38.8	45.4	53.8	49.2	50.4	51.4
Constrast	0.146	0.131	0.228	0.195	0.213	0.202	0.228	Bright Construct	71.0	70.6 30.0	67.6 34.8	73.8 42.8	73.2 35.6	73.8 36.4	76.4
Elastic	0.331	0.290	0.441	0.405	0.445	0.447	0.464	Constrast Elastic	64.4	63.4	54.8 64.6	42.8 71.0	55.6 66.4	50.4 69.8	37.8 71.4
Pixel	0.404	0.350	0.500	0.465	0.500	$\frac{0.509}{0.509}$	0.538	Pixel	66.4	67.6	68.6	$\frac{71.0}{74.4}$	69.8	69.8	76.2
JPEG	0.413	0.354	0.504	0.470	0.502	$\frac{0.504}{0.504}$	0.537	JPEG	67.8	66.8	68.6	$\frac{74.4}{70.8}$	68.4	70.8	76.2
mACR	0.343	0.302	0.447	0.409	0.444	0.446	0.475	mAcc	64.4	60.7	63.7	68.8	65.6	67.7	70.1

Summary

We design a new, state-of-the-art robust training for RS

- Motivation: In some cases, achieving high RS confidence is fundamentally challenging
- Two variants of Gaussian training: Bottom-K, and Worst-case Gaussian objectives
- Properly calibrating smoothed confidences impacts the certified robustness of RS

Randomized smoothing has a great potential toward reliable deep learning

- RS is attack-free, and can handle multiple adversaries at once
- RS provides provable guarantees, even in sample-wise manner
- RS is model-agnostic flexible and has many applications [Rosenfeld et al., 2020; Fischer et al., 2021]
- We hope our work could be a step toward making RS stronger in practical uses

Please drop by our poster session for more information!

