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Abstract

The information bottleneck (IB) principle is one of nat-
ural approaches to obtain a succinct representation x→ z
for a given downstream task x→ y: namely, it finds z that
(a) maximizes the (task-relevant) mutual information I(z;y),
while (b) minimizing I(x; z) to constrain the capacity of z
for better generalization. In practical scenarios where the
training data is limited, however, the IB objective may not
be able to prevent z from co-adapting on so-called “shortcut”
signal, i.e., features only in training data those are predictive-
yet-compressible enough. They are typically from biases in
data acquisition, and less generalizable under new (but still
semantically-aligned) environments. To bypass such a fail-
ure mode, we extend the standard framework of IB to also
model the nuisance information with respect to z, namely zn,
so that (z, zn) can reconstruct x: by minimizing I(zn;y)
as well as the IB objective here, z can now encode more
diverse y-related signal in x, while disentangling the re-
mainder information from z. Our experimental results show
that the representation learned from our proposed training
consistently improves various notions of robustness over the
standard VIB training without relying on data augmenta-
tions, e.g., novelty detection and corruption robustness.

1. Introduction

Generally speaking, a neural network model, say f , is a
parametric mapping of a given random variable x into its
representation z := f(x), that encodes useful features in
x to predict a target random variable y so that a simpler
(e.g., linear) mapping can recover y from z: in other words,
a “good” representation z should keep information of x
that is correlated with y, while preventing z from being
too complex. The information bottleneck (IB) principle
[97, 98] is a simple and natural implementation, which sets
the mutual information I(x; z) as complexity measure of z:

max
f

RIB(f), for RIB(f) := I(z;y)− βI(x; z), (1)

where β ≥ 0 controls the capacity constraint which ensures
I(x; z) ≤ Iβ for some (implicitly defined) Iβ .

That being said, the brittleness of neural networks for
out-of-distribution samples can still persist even with the IB
objective (1): in other words, a “good” model f from the ob-
jective can work poorly under a certain distribution shift in x,
say x̂, so that I(x;y) = I(f(x);y)≫ I(f(x̂);y). In prac-
tice, this can occur especially when the (hard-to-compute)
mutual information terms in (1) are approximated based
on limited, and potentially biased data: for example, many
well-curated datasets commonly used in research [62, 88]
are likely to be processed prior to release for quality control,
e.g., by filtering out some severely corrupted samples from
its original collection. Such a bias can make the computation
of I(z;y) to be also biased, i.e., toward over-estimating a
“shortcut” signal [24] in the data that is not generalizable for
x̂. Even worse, by jointly minimizing I(x; z) in (1), it can
further compress out other useful signal in x if the shortcuts
are already predictive enough.

Contribution. In this paper, we rethink the implemen-
tation of the information bottleneck (IB) principle under
presence of distribution shifts. In particular, we argue that a
“robust” representation z should always encode every signal
in x that is correlated with y, rather than extracting only a
few shortcuts; the capacity constraint in IB (1) can still be
applied for the nuisance information which is not related
to predict y at all. We propose a practical design of this
framework by incorporating a nuisance representation zn
alongside z of the standard IB framework so that (z, zn) can
reconstruct x. This results in a novel synthesis of adversarial
autoencoder [77] and variational information bottleneck [1]
into a single framework.

At a high level, our method can be viewed as a new ap-
proach of improving the robustness of discriminative classi-
fiers by incorporating a generative model. For example, [66]
and [29] use a simple Gaussian mixture model of low expres-
sive power and an energy-based model of training instability
for the purpose, respectively. Our approach of incorporat-
ing autoencoder-based models takes the best of two worlds;
it enables (a) stable training, while (b) attaining the high



expressive generative performances. Regarding the litera-
ture of nuisance modeling [43, 46, 84], on the other hand,
our work is the first to the best of our knowledge on ex-
ploring and designing a successful VIB-based framework to
improve multiple recent safety measures, e.g., both in corrup-
tion/adversarial robustness and out-of-distribution detection,
as well as establishing new practices to scale-up the previous
approaches that were mostly limited in MNIST-scale.1

2. Nuisance-extended IB
Notations. Given two random variables x ∈ X , the input,
and y ∈ Y , the target, we consider a general problem of
representation learning [1, 7, 19, 21, 60, 83], where the goal
is to find a mapping (or an encoder) f : X → Z from data
D = {(xi, yi)}ni=1

2 so that z := f(x), the representation,
can predict y with a simper (e.g., linear) mapping. We as-
sume that the encoder f is parametrized by a neural network,
and the mapping is stochastic to adopt an information theo-
retic view of neural networks [98], i.e., the encoder output
is a random variable defined as pf (z|x) rather than a con-
stant. In practice, such a modeling can be done through the
reparametrization trick [58], i.e., by allowing an indepen-
dent random variable ϵ to the (deterministic) mapping f as
an additional input, namely z := f(x, ϵ). For example, a
popular design of Gaussian decoder parametrizes f by:

f(x, ϵ) := fµ(x) + ϵ · fσ(x), (2)

so that the deterministic fµ and fσ can still be learned
through gradient-based optimization.
Nuisance-extended IB. The standard information bottle-
neck (IB) objective (1) obtains a representation z := f(x)
on premise that the future inputs will be also from the data
generating distribution pd(x,y). In this paper, we aim to
extend the IB objective under assumption that the input x
can possibly be corrupted through an unknown noisy chan-
nel in the future, say x → x̂, while x̂ still preserves the
semantics of x with respect to y: in other words, we as-
sume I(x;y) = I(x̂;y) > 0. Intuitively, one can imagine a
scenario that a given input x contains multiple signals that
each is already highly correlated with y, i.e., filtering out
the remainder from x does not affect its mutual information
with y. It may or may not be surprising that such signals are
quite prevalent in practical deep neural networks, e.g., [41]
empirically observe that adversarial perturbations [27, 93]
crafted from a given neural network are sufficient for the
model to perform accurate classification.

In the context of IB framework, where the goal is to obtain
a succinct encoder f , it is now reasonable to presume that

1We provide a more extensive and broader discussions on related works
in Appendix E.

2Although we focus here on the setup of supervised learning, the frame-
work itself in general does not rule out more general scenarios, e.g., when
the target y can be self-supervised from x [12, 83].

the noisy channel x̂ acts like an adversary, i.e., it minimizes:

min
x̂

I(ẑ := f(x̂);y) subject to I(x;y) = I(x̂;y), (3)

given that one has no information on how the channel would
behave a priori. This minimax optimization thus would
require f to extract every signal in x whenever it is highly
correlated with y, to avoid the case when x̂ filter out all
the signal except one that f has missed. We notice that,
nevertheless, directly optimizing (3) with respect to x̂ is
computationally infeasible in practice, considering that (a)
it is in many cases an unconstrained optimization in a high-
dimensional X , (b) with a constraint on (hard-to-compute)
mutual information.

In this paper, to make sure that f still exhibits the “adver-
sarial” behavior without (3), we propose to let f to model
the nuisance representation zn as well as z: specifically, zn
aims to model the “remainder” information from z needed
to reconstruct x, i.e., it maximizes I(x; z, zn), while com-
pressing out information that is correlated with y, i.e., it also
minimizes I(zn;y): therefore, every information that is cor-
related with y should be encoded into z in a complementary
manner. Here, we remark that now the role of the capacity
constraint in (1) becomes even more important: not only for
regularizing z to attain simpler representation, it addition-
ally penalizes zn from pushing out unnecessary information
to predict y into z, making the objective competitive again
between z and zn as like in (3). Combined with the original
IB objective (1), we get:

max
f

RNIB(f) := RIB(f)− I(zn;y) + αI(x; z, zn), (4)

where α ≥ 0. The proposed objective, nuisance-extended
IB (NIB), can be viewed as a regularized form of IB by
introducing zn. This attains the optimal when I(x; z, zn)
and I(zn;y) in (4) are maximized and minimized, respec-
tively, i.e., with the conditions of H(x|z, zn) = 0 and
I(zn;y) = 0. The following observation highlight that
having these conditions, additionally with the independence
z ⊥ zn, leads f that can recover the original information of
I(x;y) from the noisy channel I(ẑ;y):

Lemma 1. Let x ∈ X , and y ∈ Y be random variables,
x̂ be a noisy observation of x with I(x;y) = I(x̂;y).
Given that a representation [ẑ, ẑn] := f(x̂) of x̂ satisfies (a)
H(x̂|ẑ, ẑn) = 0, (b) I(ẑn;y) = 0, and (c) ẑ ⊥ ẑn, it holds
I(ẑ;y) = I(x;y).

A practical design. Based on the NIB objective defined in
(4) and Lemma 1, we design a practical training objective to
implement the proposed framework. Here, we present a sim-
ple instantiation of NIB by approximating it with a synthesis
of adversarial autoencoder [21] and variational information
bottleneck (VIB) [1], calling it nuisance-extended informa-



Figure 1. An overview of our proposed framework, nuisance-extended variational
information bottleneck (NVIB). Overall, the training incorporates adversarial autoen-
coder into the variational information bottleneck by introducing a nuisance zn with
respect to y in representation learning. We also propose an adversarial similarity
based reconstruction to further accelerate the training.
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of training methods in
clean vs. corruption er-
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on ViT-S/4 architecture.
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Figure 3. Comparison
of certified robust accu-
racy at r on CIFAR-10.

tion bottleneck autoencoder (NIBAE).3 Figure 1 illustrates
an overview of our framework.

Overall, Lemma 1 states that a robust encoder f demands
for a “good” nuisance model that achieves generalization on
ẑ in three aspects: (a) a good reconstruction, (b) nuisance-
ness, and (c) the independence between z and zn. To model
these behaviors, we consider a decoder model decoder g :
Z → X as well as the encoder f : X → Z , and adopt the
following practical training objectives which incorporates an
autoencoder-based loss and two adversarial losses originally
defined for generative adversarial networks (GANs) [26]:

(a) We first pose the standard mean-squared-error based re-
construction loss, which assumes that the decoder output
follows Gaussian distribution of constant variance: i.e.,

Lrecon := − log p(x|z, zn) =
1

2
∥x− g(z, zn)∥22. (5)

(b) To force the nuisance-ness of zn with respect to y, on the
other hand, we approximate p(y|zn) variationally with an
MLP, say qn(y|zn), and perform an adversarial training:

Lnuis := Ex[CE(q∗n(zn), 1
|Y| )], (6)

where q∗n := minqn Ex,y[CE(qn(zn),y)], and CE de-
notes the cross entropy loss. Here, it optimizes the cross-
entropy towards the “uniform” distribution in Y .

(c) To induce the independence between z and zn, we assume
that the joint prior of z and zn is the isotropic Gaussian,
i.e., p(z, zn) ∼ N (0, I), and performs a GAN:

Lind :=max
qz

Ex[log(qz(E(x)))] (7)

+ Ez,zn∼N (0,I)[log(1− qz(z, zn))], (8)

where qz is an MLP discriminating [z, zn] from N (0, I).

3We also design an architecture for NIBAE in Appendix F.

Lastly, to approximate the original IB objective RIB(f) in
NIB (4), we instead maximize the variational information
bottleneck (VIB) [1] objetive Lβ

VIB, that can provide a lower
bound on RIB.4 Specifically, it makes variatonal approxima-
tions of: (a) p(y|z) by a (parametrized) “decoder” neural
network q(y|z), and (b) p(z) by an “easier” distribution
r(z), e.g., isotropic Gaussian N (z|0, I). Recalling that we
assume a Gaussian decoder (2) for f(x, ϵ), we have:

Lβ
VIB := Eϵ[− log q(y|f(x, ϵ))] + β KL (p(z|x)∥r(z)).

(9)
Overall training objective. Combining the proposed ob-
jectives as well as the original VIB loss, Lβ

VIB (9) leads us
to the final objective. Although combining multiple losses
in practice may introduce additional hyperparameters, we
found most of the proposed losses can be added without
scaling except for the reconstruction loss Lrecon and the β
in the original VIB loss. Hence, we get:

LNIBAE := Lβ
VIB + α · Lrecon + Lnuis + Lind (10)

Algorithm 1 (in Appendix A) summarizes the overall proce-
dure of NIBAE training.5

3. Experiments
We verify the effectiveness of our proposed NIBAE train-

ing for various aspects of out-of-distribution generalization
compared to the standard VIB: specifically, we cover (a) nov-
elty detection (Section 3.1 and Appendix G.1), (b) corruption
robustness (Section 3.2 and Appendix G.2), (c) adversarial
robustness (Appendix G.3) tasks which all have been chal-
lenging without assuming task-specific priors [35, 37, 76].
We also present evaluations on the effectiveness of our pro-
posed components in the context of unconditional generative

4A more detailed description on the VIB framework (as well as on GAN)
can be found in Appendix E.2.

5Upon the NIBAE loss (10), we further propose an auxiliary loss for
better generation quality, namely adversarial similarity loss, in Appendix F.



Table 1. Comparison of OOD detection performances on OB-
JECTS [105], which considers CIFAR-10-C and ImageNet-10 as
additional in-distribution upon CIFAR-10 (training). Bold and
underline denote the best and runner-up results, respectively.

Method AUROC (↑) / AUPR (↑) / FPR95 (↓)
Cross-entropy maxy p(y|x) [34] 72.27 / 81.47 / 88.63

ODIN [68] 72.23 / 78.76 / 76.98
Energy-based [70] 67.01 / 74.75 / 80.96
Mahalanobis [66] 74.38 / 82.25 / 80.07
SEM [105] 78.42 / 89.33 / 89.87

logDir0.05(y) 77.28 / 86.28 / 83.64

VIB [1] maxy p(y|x) [34] 76.84 / 87.46 / 84.41

logDir0.05(y) 79.91 / 89.48 / 78.05

NIBAE (Ours) maxy p(y|x) [34] 76.56 / 86.75 / 84.20

logDir0.05(y) 82.38 / 91.61 / 73.94
+ logN (zn; 0, I) 87.21 / 93.83 / 61.34

modeling in Appendix I. We provide an ablation study in
Appendix C for a component-wise analysis on the method.
The full details on the experiments, e.g., datasets, training
details, and hyperparameters, can be found in Appendix B.

3.1. Out-of-distribution detection
We first show that our NIBAE model can be a good de-

tector for out-of-distribution samples (OODs), i.e., to solve
the novelty detection task: in general, the task is defined by
a binary classification problem that aims to discriminates
novel samples from in-distribution samples. We propose
two score functions: (a) the Dirichlet score logDir0.05(y)
which is applicable for other models, and (b) the nuisance
score logN (zn; 0, I) that is unique to NIBAE models (see
Appendix G.1 for the details). We consider two evaluation
benchmarks and compare ResNet-18 [30] models trained
on CIFAR-10: (a) the “standard” benchmark, that has been
actively adopted in the literature [34, 66, 68] assumes the
test set of CIFAR-10 as in-distribution and measures the de-
tection performance of other independent datasets;6 (b) the
OBJECTS benchmark, recently proposed in [105], further ex-
tend the standard benchmark on CIFAR-10 to also consider
“near” in-distribution samples in OOD evaluation. Specifi-
cally, OBJECTS assumes CIFAR-10-C [32] and ImageNet-
10 [88] as in-distribution in test-time as well as CIFAR-10,
making the detection task much more challenging [105].

The results are reported in 1 for the OBJECTS bench-
mark: overall, we confirm that the score function combining
the information of zn and y of NIBAE significantly improve
novelty detection in a complementary manner over strong
baselines, showing the effectiveness of modeling nuisance.
For example, Regarding Table 1, on the other hand, our
method of NIBAE shows even more significant improve-
ments here: e.g., NIBAE improves the previous best AU-
ROC (of Mahalanobis [66]) on OBJECTS vs. MNIST from

6The results on the “standard” benchmark are reported in Appendix G.1.

Table 2. Comparison of test error rates (%) on CIFAR-10 and its
variants, namely CIFAR-10-C [32], CIFAR-10.1 [86], 10.2 [75],
and CINIC [17]. We use ViT-S/4 for this experiment. Bold and
underline indicate the best and runner-up results, respectively.

Method C-10 C-10-C C-10.1 C-10.2 CINIC

Cross-entropy 6.08 16.0 13.4 18.3 23.7
VIB [1] 5.98 15.2 13.6 16.8 23.6
AugMix [37] 6.52 15.1 14.2 17.2 24.2
PixMix [38] 5.43 10.3 13.1 16.6 23.2

NVIB (Ours) 4.97 12.3 11.6 15.5 22.2
+ AugMix [37] 5.35 12.0 12.5 15.8 22.6
+ PixMix [38] 4.67 8.08 10.4 14.8 22.1

77.04 → 92.43. This shows that both representation and
score obtained from NIBAE help to better discriminate in-
vs. out-of-distribution samples in a more semantic sense
compared to previous detection methods.

3.2. Robustness against natural corruptions
Next, we evaluate the corruption robustness of our

method, namely, the generalization ability of a represen-
tation in the situation that the given input can be distorted
with natural corruptions (e.g., fog, brightness, etc.) those
are still semantic to humans. To this end, we consider (a)
CIFAR-10/100-C [33], a corrupted version of CIFAR-10/100
simulating 15 common corruptions in 5 severity levels, re-
spectively, as well as (b) CIFAR-10.1 [86], CIFAR-10.2 [75],
and CINIC-10 [17], i.e., three re-generations of the CIFAR-
10 test set for the purpose of measuring generalization. From
these experiments, we aim to verify that NIBAE can im-
prove effective robustness [95] without a domain-specific
prior knowledge: in particular, we are interested in improv-
ing corruption accuracy under control of the similar level
of clean accuracy, which has been challenging given the
strong (linear) correlation observed between them across
models [31, 79, 95]. We test two encoder architectures,
namely ResNet-18 [30] and ViT-S [22, 99], to also inves-
tigate the effect of architectures in NIBAE.7

In Table 2, we observe that NIBAE significantly and con-
sistently improves corruption errors upon VIB, and these
gains are strong even compared with state-of-the-art meth-
ods: e.g., NIBAE can solely outperform a strong base-
line of AugMix [37]. Although a more recent method of
PixMix [38] could achieve a lower corruption error by uti-
lizing extra (pattern-like) data, we remark that (a) NIBAE
also benefit from PixMix (i.e., the extra data) as given in
“NIBAE + PixMix”, and (b) the generalization capability
of NIBAE is better than PixMix on CIFAR-10.1, 10.2 and
CINIC-10, i.e., in beyond common corruptions, by less rely-
ing on domain-specific data. Figure 2 compares the linear
trends made by Cross-entropy and NIBAE across different
data augmentations and hyperparameters, confirming that
NIBAE exhibits a better operating points.

7We report the ResNet-18 results on CIFAR-10/100-C in Appendix G.2.
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A. Training procedure of NIBAE

Algorithm 1 Nuisance-extended information bottleneck autoencoder (NIBAE)

Require: encoder f , decoder g, discriminators d, prior p0(z), α, β, τ > 0.

1: for # training iterations do
2: Sample (xi, yi)

m
i=1 ∼ pd(x,y)

3: z(i), z
(i)
n ← f(xi), and sample z(i), z

(i)
n ∼ z(i), z

(i)
n

4: x̂i ← g(z(i), z
(i)
n )

5: // UPDATE DISCRIMINATORS
6: d

(i)
sim ← sim(dx(ΠE(xi)), dx(ΠE(x̂i)))/τ

7: Lsim ← 1
m

∑
i log(1− sigmoid(d

(i)
sim))

8: Lind ← Ez,zn∼N (0,I)[log dz(z, zn)] +
1
m

∑
i log(1− dz(z, zn))

9: LD
nuis ← 1

m

∑
i CE(qn(y|z

(i)
n ), yi)

10: LD ← LD
nuis − Lind − Lsim

11: dx, dz, qn ← Update dx, dz, qn to minimize LD

12: // UPDATE ENCODER AND DECODER
13: Lβ

VIB ← 1
m

∑
i [− log q(yi|zi) + βKL(p(z|xi)∥p0(z))]

14: Lrecon ← 1
m

∑
i
1
2∥xi − x̂i∥22

15: Lnuis ← 1
m

∑
i CE(q∗n(y|z

(i)
n ), 1

|Y| )

16: LNIBAE ← Lβ
VIB + αLrecon + Lnuis + Lind + Lsim

17: f, g,Πf ← Update f, g,Πf to minimize LNIBAE

18: end for

B. Experimental details

B.1. Architectures

Recall that our proposed NIBAE architecture consists of (a) an encoder f , (b) a decoder g, and (c) MLP-based discriminators
dy, dz, and an MLP for feature statistic projection Πf . For the encoder architecture, we mainly consider ResNet-18 [30]
and ViT-S [22, 99] in our experiments. When ResNet-18 is used, we consider the generator architecture of FastGAN [69] as
the decoder, but with a modification on normalization layers: specifically, we replace the standard batch normalization [42]
layers in the architecture with adaptive instance normalization (AdaIN) [51] so that the affine parameters can be modulated by
z and zn as well as the decoder input: we observe a consistent gain in FID from this modification. In cases when ViT-S is
used as the encoder, on the other hand, we use the same transformer architecture as the decoder model where it is preceded
by linear layers that maps both z and zn into the space of patch embedding. We assume the patch size of ViT as 4, i.e., we
denote it as ViT-S/4, so that the output from the model contains 8× 8 patch embeddings in case of CIFAR-10 similarly to
the ResNet-18 architecture. To model z and zn in the ViT architecture, we simply split the output patch embedding into two
separate embeddings (of reduced embedding dimensions): one of these embeddings is average-pooled to define z, and the
remaining one is used as the nuisance zn. We set 128 as the nuisance dimension zn, and use hidden layer of size 1,024 for
MLP-based discriminators, e.g., dy, dz, and MLPs for projection Πf .

B.2. Training and hyperparameters

Unless otherwise noted, we train each model for 200K updates. For training NIBAE models, we use α = 0.01, β = 0.0001,
and τ = 0.2 unless otherwise noted. We use different training configurations depending on the encoder architecture, i.e.,
whether is it ResNet-18 or ViT-S/4: (a) For ResNet-based models, we train the encoder part (f ) via stochastic gradient
descent (SGD) with batch size of 64 using Nesterov momentum of weight 0.9 without dampening. We set a weight decay
of 10−4, and use the cosine learning rate scheduling [72] from the initial learning rate of 0.1. For the remainder parts of
our NIBAE architecture, e.g., the decoder g and discriminator MLPs, on the other hand, we follow the training practices of
GAN instead: specifically, we use Adam [55] with (α, β1, β2) = (0.0002, 0.5, 0.999), following the hyperparameter practices
explored by [63]. (b) For ViT-based models, on the other hand, we train both (transformer-based) encoder and decoder models



via AdamW [73] with a weight decay of 10−4, using batch size 128 and (α, β1, β2) = (0.0002, 0.9, 0.999) with the cosine
learning rate scheduling [72] and 2000 steps of a linear warm-up phase in learning rate. Overall, we observe that a stable
training of ViT on CIFAR-10 requires much stronger regularization compared to ResNets, otherwise they often significantly
suffer from overfitting. In this respect, we apply various regularization practices those are now widely used for ViTs on
ImageNet-1K, namely mixup [108], CutMix [107], and RandAugment [15], following those established in [8]: which could
lead a stable ViT training on CIFAR-10 achieving similar performance to ResNet in terms of (clean) test accuracy.

B.3. StyleGAN2 and FastGAN

For the experiments reported in Table 7 of the main text, we adopt StyleGAN2 [52] and FastGAN [69] architectures to verify
the effectiveness of our proposed FSD. For the StyleGAN2-based models, we follow the training details of DiffAug [111]
and ADA [50] in their CIFAR experiments: specifically, we use Adam with (α, β1, β2) = (0.002, 0.0, 0.99) for optimization
with batch size of 64. We use non-saturating loss for training, and use R1 regularization [78] with γ = 0.01. We do not use,
however, the path length regularization and the lazy regularization [52] in training. We take exponential moving average on the
generator weights with half-life of 500K samples. We stop training after 800K generator updates, which is about the half of
those conducted for the ADA baseline [50]. For the FastGAN baseline, on the other hand, we run the official implementation
of FastGAN8 [69] on CIFAR-10 for the length of 6.4M samples with batch size 16. For the “Projected GAN” baseline, we
adapt the official implementation9 [89] onto the ImageNet pre-trained ResNet-18, and trained for 6.4M samples with batch
size 64. Our results (“FSD”) follows the same training details, but with a difference in its discriminator architecture.

B.4. Computing infrastructure

Unless otherwise noted, we use a single NVIDIA Geforce RTX-2080Ti GPU to execute each of the experiments. For
experiments based on StyleGAN2 architecture (Table 7), we use two NVIDIA Geforce RTX-2080Ti GPUs per run.

C. Ablation study

Figure 4. Reconstructions under random nuisance zn. The leftmost per row
shows the original reconstruction.

Table 3. Comparison of the test error rate (Err.; %), corrup-
tion error (C-Err.; %) and FID on CIFAR-10 across ablations.

β Lrecon Lsim Lnuis Lind Err. C-Err. FID

1e-4 ✓ ✓ ✓ ✓ 7.07 23.3 33.3

1e-3 ✓ ✓ ✓ ✓ 7.32 24.5 31.0
1e-2 ✓ ✓ ✓ ✓ 7.38 26.3 30.8

1e-4 ✗ ✓ ✓ ✓ 8.29 29.2 33.8
1e-4 ✓ ✗ ✓ ✓ 7.95 28.6 83.1
1e-4 ✓ ✓ ✗ ✓ 8.01 24.1 29.2
1e-4 ✓ ✓ ✓ ✗ 7.31 22.4 78.3

We further perform an ablation study on CIFAR-10 for a detailed analysis of the proposed NIBAE:
Effect of β. As also introduced in the original IB objective, β ≥ 0 plays the key role in NIBAE training as it controls

the information balance between the semantic z and the nuisance zn. Here, Figure 4 examine how using different value of β
affect the actual representations, by comparing the reconstructed samples for a fixed input while randomizing the nuisance zn.
Indeed, we observe a clear trend from this comparison demonstrating the effect of β: having larger β makes the model to push
more “semantic” information into zn regarding it as the nuisance. Without information bottleneck, i.e., in case when β = 0.0,
we qualitatively observe that the network rather encodes most information in z, due to the minimax loss applied to the nuisance
zn. Quantitatively, this behavior is further evidenced in Table 3 as an increase in the corruption errors when using larger β.

Reconstruction loss. The reconstruction loss Lrecon is one of essential part to make NIBAE work as a “nuisance
modeling”: in Table 3, we provide an ablation when this loss is omitted, showing a significant degradation in the final accuracy,
and more crucially in the corruption error. This confirms the necessity of reconstruction loss to obtain a robust representation
in NIBAE. Nevertheless, due to the adversarial similarity loss Lsim that can also work (while not perfectly) as a reconstruction
loss, one can still observe that the FID of the model can be moderately preserved.

8https://github.com/odegeasslbc/FastGAN-pytorch
9https://github.com/autonomousvision/projected_gan

https://github.com/odegeasslbc/FastGAN-pytorch
https://github.com/autonomousvision/projected_gan


Adversarial similarity. When the Lsim is omitted, on the other hand, we instead observe a significant degradation in FID
rather than accuracy, showing the effectiveness of our proposed adversarial similarity based guidance to improve decoder
performance while affecting less to the accuracy compared to the case when Lrecon is ablated. It is quite remarkable that there
is still a degradation in both clean and corruption accuracies compared to the case when Lsim is jointly minimized: we observe
that in this scenario of missing Lsim, the overall reconstruction loss Lrecon is often also less optimized, which could eventually
affect the quality of z.

Nuisance loss. From the ablation of Lnuis given in Table 3, we observe not only a considerable degradation in clean
accuracy but also in its corruption robustness. This shows that strictly forcing the nuisance-ness to zn (against y) indeed helps
z to learn a more robust representation, possibly from encouraging z to extract more diverse class-related information in a
faithful manner by keeping the remainder information in zn sufficient to infer x.

Independence loss. The independence loss Lind in our current design, which essentially performs a GAN training toward
p(z, zn) ∼ N (0, I), not only forces z ⊥ zn but also leads z and zn to have a tractable marginal distribution: so that one could
efficiently perform a sampling from the learned decoder. In a practical aspect, therefore, omitting Lind in NIBAE can directly
harm its generation quality as given in Table 3. Nevertheless, it is still remarkable that the ablation could rather improve the
corruption error: this suggests that our current design of forcing the full Gaussian may be restrictive. An alternative design for
the future work could assume a weaker condition for z and zn, instead with a more sophisticated sampling to obtain a valid
generative model from NIBAE.

D. Proof of Lemma 1
Lemma 1. Let x ∈ X , and y ∈ Y be random variables, x̂ be a noisy observation of x with I(x;y) = I(x̂;y). Given that a

representation [ẑ, ẑn] := f(x̂) of x̂ satisfies (a) H(x̂|ẑ, ẑn) = 0, (b) I(ẑn;y) = 0, and (c) ẑ ⊥ ẑn, it holds I(ẑ;y) = I(x;y).

Proof. Given that f is invertible for the random variable x̂, the statement follows from the chain rule of mutual information
and that of conditional mutual information, as well as by applying (b) and (c):

I(x;y) = I(x̂;y) = I(y; ẑ, ẑn) = I(y; ẑn) + I(y; ẑ|ẑn) (11)
= I(y; ẑ) +H(ẑn|y) +H(ẑn|ẑ)−H(ẑn|y, ẑ)−H(ẑn) (12)
= I(y; ẑ) = I(ẑ;y). (13)

E. Additional background
E.1. Detailed survey on related work

Out-of-distribution robustness. Since the seminal works [2, 82, 93] revealing the fragility of neural networks for
out-of-distribution inputs, there have been significant attempts on identifying and improving various notions of robustness:
e.g., detecting novel inputs [34–36, 65, 66, 94, 104], robustness against corruptions [18, 25, 33, 37, 103], and adversarial
noise [5,9,14,27,76,109], to name a few. Due to its fundamental challenges in making neural network to extrapolate, however,
most of the advances in the robustness literature has been made under assuming priors closely related to the individual
problems: e.g., Outlier Exposure [35] and AugMix [37] assume an external dataset or a pipeline of data augmentations to
improve the performances in novelty detection and corruption robustness, respectively; Tent [103] leverages extra information
available from a batch of samples in test-time to adapt a given neural network; [49, 100] observe that neural networks robust to
a certain type of adversarial attack (e.g., an ℓ∞-constrained adversary) do not necessarily robust to other types of adversary
(e.g., an ℓ1-constrained adversary), i.e., adversarial robustness hardly generalizes from the adversary assumed a priori for
training. In this work, we aim to improve multiple notions of robustness without assuming such priors, through a new training
scheme that extends the standard information bottleneck principle under noisy observations in test-time.

Hybrid generative-discriminative modeling. Our proposed method can be also viewed as a new approach of improving
the robustness of discriminative models by incorporating a generative model, in the context that has been explored in
recent works [29, 66, 90, 106]: for example, [66, 67] have shown that assuming a simple Gaussian mixture model on
the deep discriminative representations can improve novelty detection and robustness to noisy labels, respectively; [90]
develop an empirical defense against adversarial examples via generative classifiers; A line of research on Joint Energy-
based Models (JEM) [29, 106] assumes the entire discriminative model as a joint generative model by interpreting the
logits of p(y|x) as unnormalized log-densities of p(x|y), and shows that modeling p(x|y) as well as p(y|x) can improve



out-of-distribution generalization of the classifier. Nevertheless, it is still an unexplored and open question that how to
“better” incorporate generative representation into discriminative models: in case of novelty detection, for example, several
recent works [81, 87, 91, 104] observe that existing likelihood-based generative models are not accurate enough to detect
out-of-distribution datasets, suggesting that relying solely on (likelihood-based) deep generative representation may not
enough for robust classification [23]. In case of JEM, on the other hand, it has been shown that directly assuming a joint
generative-discriminative representation often makes a significant training instability. In this work, we propose to introduce an
autoencoder-based model to avoid the training instability, and consider a design that the nuisance can succinctly supplement
the given discriminative representation to be generative.

Invertible representations and nuisance modeling. The idea of incorporating nuisances can be also considered in the
context of invertible modeling, or as known as flow-based models [6, 11, 20, 28, 44, 56],10 which maps a given input x into
a representation z of the same dimension so that one can construct an inverse of z to x: here, the nuisance can be naturally
defined as the remainder information of z for a given subspace of interest, e.g., to model y. For example, [43] adopt a
fully-invertible variant of i-RevNet [44] to analyze excessive invariance in neural networks, i.e., the existence of pairs of
completely different samples with the same representation in a neural network, and proposes to maximize the cross-entropy
for the nuisances in a similar manner to our proposed minimax-based nuisance loss ((6) in the main text); [4], on the other
hand, leverages invertible neural network to model a Gaussian mixture based generative classifier in the representation space,
so that nuisance information can be preserved until its representation. Compared to such approaches relying on invertible
neural networks, our autoencoder-based nuisance modeling does not guarantee the “full” invertibility for arbitrary inputs:
instead, it only focuses on inverting the data manifold given, and this enables (a) a much flexible encoder design in practice,
i.e., other than flow-based designs, and (b) a more scalable generative modeling of nuisance representation zn while forcing
its independence to the semantic space z. This is due to that it works on a compact space rather than those proportional to
the input dimension, which is an important benefit of our modeling in terms of the scalability of nuisance-aware training,
e.g., beyond an MNIST-scale as done in [43]. More closer related works [45, 46, 84] in this respect instead introduce a
separate encoder for nuisance factors, where the nuisanceness is induced by the independence to z: e.g., DisenIB [84] applies
FactorVAE [54] between semantic and nuisance embeddings to force their independence.11 Yet, similarly to the invertible
approach, the literature has been questioned on that the idea can be scaled-up beyond, e.g., MNIST, and our work does explore
and establish a practical design that is applicable for recent architectures and datasets addressing modern security metrics, e.g.,
corruption robustness. On the technical side, for example, we find that the “nuisanceness to y” is more important for zn than
the “independence with z” (as usually done in the previous works [45, 46, 84]) to induce a robust representation, as verified in
our ablation study in Appendix C, which can be a useful practice for the future research concerning robust representation
learning.

Autoencoder-based generative models. There have been steady advances in generative modeling based on autoencoder
architectures, especially since the development in variational autoencoders (VAEs) [58]: due to its ability of estimating data
likelihoods, and its flexibility to implement various statistical assumptions [54, 57, 74]. With the advances in its training
objectives [39, 77, 102] as well as the architectural improvements [13, 101], VAE-based models are currently considered as
one of state-of-the-art approaches in likelihood based generative modeling: e.g., a state-of-the-art diffusion models [40, 92] is
built upon the denoising autoencoders under Gaussian perturbations, and recently-proposed hierarchical VAEs [13, 101] have
shown that VAEs can benefit from scaling up its architectures into deeper encoder networks. In perspectives of viewing our
method as a generative modeling, NIBAE is based on adversarial autoencoders [77] that replaces the KL-divergence based
regularization in standard VAEs with a GAN-based adversarial loss, with a novel encoder architecture that is based on the
internal feature statistics of discriminative models: so that the model can better encode lower-level features without changing
the backbone architecture. We observe that this design enables autoencoder-based modeling even from a large, pre-trained
discriminative models, and this “projection” of internal features can significantly benefit the generation quality, as well as for
generative adversarial networks (GANs) as observed in Table 7 in the main text.

E.2. Technical background

Variational information bottleneck. Although the information bottleneck (IB) principle given in (1) [97] suggests a useful
definition on what we mean by a “good” representation, computing mutual information of two random variables is generally
hard and this makes the IB objective infeasible in practice. To overcome this, variational information bottleneck (VIB) [1, 10]
applies variational inference to obtain a lower bound on the IB objective (1). Specifically, it approximates: (a) p(y|z) by
a (parametrized) “decoder” neural network q(y|z), and (b) p(z) by an “easier” distribution r(z), e.g., isotropic Gaussian

10A more complete survey on flow-based models can be found in [59].
11We provide a more direct empirical comparison with DisenIB [84] to our proposed method in Appendix G.4.



N (z|0, I). Having such (variational) approximations in computing (1) as well as the Markov chain property y − x− z of
neural networks, one yields the following lower bound on the IB objective (1):

I(z;y)− βI(z,x) ≥ Ex,y

[∫
dz

(
p(z|x) log q(y|z)− βp(z|x) log p(z|x)

r(z)

)]
. (14)

This bound can now be approximated with the empirical distribution p(x,y) ≈ 1
n

∑
i δxi(x)δyi(y) from data. By further

assuming a Gaussian encoder p(z|x) := N (z|fµ(x), fσ(x)) as defined in (2) and applying the reprarametrization trick [58],
we get the following VIB objective:

Lβ
VIB :=

1

n

n∑
i=1

Eϵ[− log q(yi|f(xi, ϵ))] + β KL (p(z|xi)∥r(z)). (15)

Generative adversarial networks. Generative adversarial network (GAN) [26] considers the problem of learning a
generative model pg from given data {xi}ni=1, where xi ∼ pd(x) and x ∈ X . Specifically, GAN consists of two neural
networks: (a) a generator network G : Z → X that maps a latent variable z ∼ p(z) into X , where p(z) is a specific prior
distribution, and (b) a discriminator network D : X → [0, 1] that discriminates samples from pd and those from the implicit
distribution pg derived from G(z). The primitive form of training G and D is the following:

min
G

max
D

V (G,D) := Ex[log(D(x))] + Ez[log(1−D(G(z)))]. (16)

For a fixed G, the inner maximization objective (16) with respect to D leads to the following optimal discriminator D∗
G,

and consequently the outer minimization objective with respect to G becomes to minimize the Jensen-Shannon divergence
between pd and pg , namely D∗

G := pd

pd+pg
.

F. Architectures for nuisance modeling
In principle, our framework is generally compatible with existing any deep network architectures: e.g., say an encoder

E : X → Z and decoder G : Z → X , respectively. In order to apply VIB, we assume that the encoder has two output heads
of dimension 2K, where K denotes the size of latent representation z: here, each output head models the Gaussian random
variable by reparametrization, i.e., by modeling (µ, σ) as the encoder output for both z ∈ RK and zn ∈ RKn .

Although it is possible that the encoder E models representations z and zn by simply taking outputs from a deep feed-
forward representations following conventions, we observe that modeling nuisances zn as well as z, which is essentially
“generative”, in standard discriminative architectures can incur a bottleneck in performance compared to modeling with the
nuisance zn: the nuisance information often requires to model the fine details in a given inputs, which is available in early
layers of E, but may not in the later layers for classification. Motivated by the following observations we made for GANs,
therefore, we propose to encode nuisance zn as well as the (“semantic”) representation z from the collection of interal features
statistics, rather than by a mapping from the last layer of E.

Motivation: Feature statistics discriminator (FSD) for GANs. Designing a stable discriminator D is a key aspect for
a successful training of GANs. The usual practice in the GAN literature is to have a separate discriminator network with a
comparable size to G, but this can be a significant computational (and memory) overhead in the framework. Instead of having
a separate discriminator network, we observe that the internal feature statistics of the encoder E can be a surprisingly effective
representation to define a simple yet efficient D: Concretely, for a given encoder E and an input x, we consider L intermediate
feature maps of x, namely x(1),x(2), · · · ,x(L) from E(x), and define the projection of x as the following:

ΠE(x) :=

[
m(1) m(2) · · · m(L)

s(1) s(2) · · · s(L)

]
, (17)

where m(l) and s(l) are the first- and second moment of channel-wise feature maps in x(l), assuming that x(l) ∈ RHWC

follows the format of convolutional feature maps:

m(l)
c :=

1

HW

∑
h,w

x
(l)
h,w,c, and s(l)c :=

1

HW

∑
h,w

(x
(l)
h,w,c −m(l)

c )2. (18)

The features statistics discriminator (FSD) we consider here is then simply a 3-layer multi-layer perceptron (MLP) applied on
ΠE(x). Table 7 compares and confirms that this simplest design of GAN discriminator can significantly accelerate GANs



when applied to pre-trained discriminative encoder architectures (here we use ResNet-18 or ResNet-50 [30] pre-trained on
ImageNet [88]).

Returning to our encoder design, motivated by that the features statistics based projection ΠE can better encode generative
representation in discriminative models, we apply the same idea to model the encoder representations z and zn: specifically,
we model z and zn by simply applying MLPs to the feature statistics projection ΠE(x) (17): we indeed observe this enables
faster and stable training, and it even allows auto-encoder based training from a pre-trained discriminative model, in a similar
manner done in Table 7, as examined in Table 8 (see Appendix I for more details).

Adversarial similarity based guidance. In addition to the objectives considered in Section 2 that are essential for NIBAE,
particularly for ConvNet-based models, e.g., , ResNet-18 as we consider in the experiments, we found that it is useful to further
leverage our proposed feature statistics based encoder architecture (see Section F) to provide the decoder g an extra guidance
in minimizing the (pixel-level) reconstruction loss (5): specifically, we propose to additionally place a discriminator network,
say dx : R|Πf | → Re, that computes similarity between Πf (x) and Πf (G(z, zn)) and performs adversarial training on it:

Lsim := log(1− sigmoid(s(d∗x)), where s(dx) := sim(dx(Πf (x)), dx(Πf (g(z, zn))))/τ. (19)

Here, d∗x := maxdx Lsim(dx), sim(x,y) := x·y
∥x∥∥y∥ denotes the cosine similarity, and τ is the temperature hyperparameter.

We use τ = 0.2 throughout our experiments.

G. Additional experimental results

G.1. Out-of-distribution detection

Score functions. A typical practice to address out-of-distribution task is to assign a score function for each input based
on the model, e.g., the maximum confidence score [34] as commonly used for supervised models, to threshold out samples
as out-of-distribution when the score is low. To define a score function for our NIBAE models, we first observe that the
log-likelihood score of the nuisance representation zn, which is a unique information for NIBAE, can be a strong score
function especially for detecting novelties those are semantically far from in-distribution, i.e.,

logN (zn; 0, I) = − 1
2∥zn∥

2, (20)

as we assume that z follows isotropic Gaussian N (0, I). For detecting so-called “harder” novelties, we propose to use the
log-likelihood score of y under a symmetric Dirichlet distribution of parameter α > 0, namely Dirα(y) ∈ ∆|Y|−1, rather than
simply using maxy p(y|x): i.e.,

logDirα(y) = (α− 1)
∑
i

log yi. (21)

Note that the distribution gets closer to the symmetric (discrete) one-hot distribution as α→ 0, which makes sense for most
classification tasks, and here we simply use α = 0.05 throughout experiments.12

In Table 4, we compare AUROC on detecting standard OOD benchmarks from models trained on CIFAR-10: overall, we
confirm that the score function combining the information of zn and y of NIBAE improve novelty detection in a complementary
manner, showing the effectiveness of modeling nuisance. For example, the combined score achieves near-perfect AUROCs for
detecting SVHN, LSUN and ImageNet datasets. It is also remarkable that NIBAE could also outperform a strong baseline of
(a supervised version of) CSI [94], which further utilizes an “OOD-like” augmentations in their representation learning.

G.2. Robustness against common corruptions

Table 5 report the corruption robustness on CIFAR-10/100-C [33], a corrupted version of CIFAR-10/100 [62] equipped with
15 natural corruptions under 5 different severity levels. Overall, we observe that NIBAE notably and consistently improves the
robustness at common corruptions than classifiers trained with cross-entropy or combined with naı̈ve VIB objectives, in both
architectures of ResNet-18 and ViT-S/4 tested. Interestingly, we observe that the impact of NIBAE in the clean error can be
different depending on the encoder architecture: with the ViT-S, NIBAE could even further improve the clean errors compared
to both Cross-entropy and VIB. This is possibly due to that the representation induced via NIBAE can be extracted better with
non-local (attention-based) operations.

12In practice, we observe that other choices in a moderate range of α near 0 do not much affect performance.



Table 4. AUROC values of various OOD detection methods trained on the CIFAR-10 dataset with five OOD datasets: SVHN, LSUN,
ImageNet, CIFAR-100, and CelebA. Bolds indicate the best results.

Method Score SVHN LSUN ImageNet CIFAR-100 CelebA

JEM [29] log p(x) 0.67 - - 0.67 0.75
JEM [29] maxy p(y|x) [34] 0.89 - - 0.87 0.79
SupCon [53] maxy p(y|x) [34] 0.97 0.93 0.91 0.89 -
CSI [94] maxy p(y|x) [34] 0.98 0.98 0.98 0.92 -

Cross-entropy maxy p(y|x) [34] 0.94 0.94 0.92 0.86 0.64
Cross-entropy log Dir0.05(y) 0.96 0.95 0.94 0.86 0.61
VIB [1] maxy p(y|x) [34] 0.95 0.94 0.92 0.88 0.76
VIB [1] log Dir0.05(y) 0.97 0.96 0.94 0.88 0.78

NIBAE (Ours) maxy p(y|x) [34] 0.88 0.88 0.86 0.84 0.81
NIBAE (Ours) log Dir0.05(y) 0.90 0.95 0.92 0.86 0.80
NIBAE (Ours) + logN (zn; 0, I) 0.98 0.99 0.99 0.86 0.79

Table 5. Comparison of average corruption errors (%; lower is better) per severity level on CIFAR-10-C and CIFAR-100-C [32]. Bold and
underline denote the best and runner-up results, respectively.

CIFAR-10-C CIFAR-100-C

Architecture Severity Clean 1 2 3 4 5 Avg. Clean 1 2 3 4 5 Avg.

ResNet-18
Cross-entropy 5.71 12.9 18.1 24.3 31.7 43.5 26.1 26.9 39.2 46.9 53.2 59.8 69.3 53.7
VIB [1] 5.47 12.5 17.5 23.6 30.7 42.5 25.4 26.5 39.7 47.5 53.8 60.5 70.1 54.3

NIBAE (Ours) 7.07 13.2 17.2 21.7 27.5 37.0 23.3 28.0 39.0 45.5 51.4 57.6 67.0 52.1

ViT-S/4

Cross-entropy 6.08 8.89 11.1 14.0 19.7 26.5 16.0 25.1 31.4 35.1 39.3 46.8 54.0 41.3
VIB [1] 5.98 8.68 10.7 13.4 18.6 24.9 15.2 26.0 31.9 35.9 40.4 47.8 55.2 42.2
AugMix [37] 6.52 8.97 10.8 13.4 18.4 23.9 15.1 24.9 29.9 33.3 37.1 43.6 51.1 39.0
PixMix [38] 5.43 7.10 8.14 9.40 12.1 14.9 10.3 24.4 27.8 29.7 32.1 36.0 40.9 33.3

NIBAE (Ours) 4.97 7.49 8.96 11.0 14.8 19.5 12.3 22.6 27.6 30.5 34.1 39.8 47.1 35.8
+ AugMix [37] 5.35 7.65 8.99 11.0 14.2 18.4 12.0 21.9 26.4 29.1 32.4 37.8 44.3 34.0
+ PixMix [38] 4.67 5.90 6.55 7.45 9.12 11.4 8.08 23.3 26.0 27.5 29.3 32.6 36.5 30.4

G.3. Robustness against adversarial examples

We evaluate adversarial robustness [27, 76, 93] adopting the randomized smoothing framework [14] that can measure a
certified robustness for a given representation: specifically, any classifier can be “robustified” by averaging its predictions
under Gaussian noise N (0, σ2I), where the robustness at input x depends on how consistent the classifier is on classifying
N (x, σ2I) [47]. We adopt such a certified (or provable) protocol since it better aligns with our focus of testing robustness of
representations that are not adversarially-trained [76]: empirical robustness, i.e., that reports the worst-case accuracy after
directly attacking a classifier with diverse adversarial attacks, is usually hard to get a non-trivial accuracy without a thorough
adversarial training. The randomized smoothing based evaluation, on the other hand, provides a more meaningful metric for
classifiers even for the “Cross-entropy” baseline, while still representing a lower-bound in robustness that a given classifier can
achieve (with an aid of randomized smoothing) against every adversarial attack method.

We follow the standard certification protocol [14] to compare the certified test accuracy at radius r, which is defined by the
fraction of the test samples that a smoothed classifier classifies correctly with its certified radius larger than r. We consider two
scenarios for comparison: (a) Standard: the given models are directly smoothed out, and (b) BatchNorm-adapted: the models
have information on the smoothing N (0, σ2I) a priori, and adapt their BatchNorm layers [42] to minimize the cross-entropy
loss under N (x, σ2I) for 10 epochs of training samples. We use σ = 0.1 for this experiment.

Figure 3 summarizes the results: (a) for Standard, our proposed NIBAE achieves significantly better certified robust
compared to the baselines at all radii tested. This confirms that the robustness of NIBAE is not only significant but also
consistent per input, especially considering its high certified robustness at higher r’s. Even in the case of BatchNorm-adapted,
where the models already have prior knowledge on the threat model, NIBAE still maintains better feature extractors beyond
BatchNorms and can improve the baselines in robust accuracies, e.g., from 47.2→ 51.4 at r = 0.25.



G.4. Results on MNIST-C

(a) Shot (b) Impulse (c) Glass (d) Motion (e) Shear

(f) Scale (g) Rotate (h) Brightness (i) Translate (j) Stripe

(k) Fog (l) Spatter (m) Dotted line (n) Zigzag (o) Canny edge

Figure 5. Sample images in MNIST-C test dataset for different corruption types.

Table 6. Comparison of (a) clean error (%; lower is better), (b) AUROC on detecting Gaussian noise (higher is better), and (c) corruption
errors (%; lower is better) per corruption type on MNIST-C [80]. Each classifier is trained on MNIST with random translation as augmentation.
We highlight our results as blue whenever the value improves the baselines more than 3% in absolute values.
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Cross-entropy 0.45 0.987 4.69 69.6 60.3 46.5 1.41 2.97 4.80 88.7 2.45 76.6 88.7 27.3 5.64 27.3 44.1 34.5
VIB [1] 0.44 0.988 4.52 73.5 73.8 71.8 1.73 2.84 5.85 90.1 2.15 78.1 89.8 28.4 5.85 28.5 44.0 37.6
sq-VIB [96] 0.48 0.955 4.32 71.5 63.5 62.3 1.62 2.70 5.74 90.5 2.43 80.3 90.3 24.8 5.91 32.0 43.4 36.4
NLIB [61] 1.15 0.974 7.13 67.9 62.5 57.9 2.15 4.00 7.06 86.9 3.28 81.8 88.7 30.1 8.97 31.0 41.8 36.4
sq-NLIB [96] 3.19 0.908 9.90 73.3 66.7 64.7 4.25 6.19 9.21 88.7 6.43 72.4 89.8 32.4 9.69 36.2 72.5 40.3
DisenIB [84] 0.54 0.997 4.60 68.8 56.4 50.4 1.11 2.04 4.84 88.7 2.01 74.3 88.5 20.1 4.75 27.4 69.0 35.2

NIBAE (Ours) 0.72 1.000 3.71 48.8 44.0 27.1 0.99 3.15 4.82 89.7 0.88 82.0 89.7 16.4 4.14 33.9 25.9 29.8

In this section, we evaluate our proposed NIBAE training on MNIST-C [80], a collection of corrupted versions of the
MNIST [64] test dataset of 15 corruption types constructed in a similar manner to CIFAR-10/100-C [32], to get a clearer view
on the effectiveness of our method on a simpler setup. For this experiments, we use a simple 4-layer convolutional network
(with batch normalization [42]) as the encoder architecture, and trained every model on the (clean) MNIST training dataset
for 100K updates following other training details of the CIFAR experiments (see Appendix B): again, we notice that the
training does not assume specific prior on the corruptions. We compare NIBAE with the direct ablations of cross-entropy and
VIB based models, as well as some variants of VIB, namely Nonlinear-VIB [61], Squared-VIB/NIB [96], and DisenIB [84].
Especially, we compare with DisenIB as (a) it considers a nuisance modeling (based on FactorVAE [54]) as NIBAE does, while
(b) also tackling some robustness concerns, e.g., its effectiveness on out-of-distribution detection for MNIST vs. Gaussian
noise.

Table 6 summarizes the results: overall, we observe that the effectiveness of NIBAE training still applies to MNIST-
C, e.g., our NIBAE training improves the average corruption error from the baseline cross-entropy based training from



33.1%→ 29.8%, which could not be obtained by simply sweeping on the baseline VIB training. Given that MNIST-C allows
a visually clearer distinction between contents and corruptions compared to CIFAR-10/100-C, one can better interpret the
behavior of given models on each corruption types: here, we observe that our training can dramatically improve robustness for
certain types of corruptions where the baselines shows poor performances, e.g., Impulse, Glass, and Motion, while still some
types of corruptions are still remaining challenging even with NIBAE, e.g., especially for low-frequency biased corruptions
such as Brightness and Stripe. Compared to DisenIB, on the other hand, we observe that the effectiveness from DisenIB,
e.g., its gain in AUROC (as conducted in [84]), could not be further generalized to improve on MNIST-C, where NIBAE still
improves upon it as well as achieving the perfect score at the same OOD task.

H. Application to model debugging

Figure 6. Qualitative comparisons between (a) the original input (the leftmost column), (b) its reconstruction (the second column), and (c) its
further reconstructions with random nuisance zn (the remaining columns), examined for test samples misclassified by a CIFAR-10 NIBAE
model with ResNet-18 architecture.

To further understand how the proposed NIBAE model internally works with its representation z and zn, we examine an
NIBAE model trained on CIFAR-10 to analyze how the model reconstruct given inputs when the model incorrectly classifies



them. Specifically, Figure 6 illustrates a subset of CIFAR-10 test samples misclassified by an NIBAE model by comparing
the original input with its reconstructed samples from the model. Overall, we observe that such a qualitative comparison can
provide a useful signal to interpret model errors: it effectively visualizes which visual cues of a given input negatively affected
the decision making process of the given model, also visualizing the closest (misclassified) realizations that the model decodes
for a given representation, i.e., what the model actually perceived. For example, for the test input given at the first row of
Figure 6, one can observe that the model essentially “ignored” the tiny part that represent the true semantic, i.e., the “deer”,
and reconstructed the remaining part as a “ship”.

I. Comparisons on image generation
I.1. Quantitative results

Table 7. Test FID (lower is better) and IS (higher is better) of GANs on
CIFAR-10. Underline indicates the best. Value marked as * is reported
from 2× longer training [50].

CIFAR-10, Uncond. Augment. FID (↓) IS (↑)
StyleGAN2 [52] HFlip 11.1 9.18
+ DiffAug [111] Trans, CutOut 9.89 9.40
+ ContraD [48] SimCLR 9.80 9.47
+ ADA [50] Dynamic 7.01∗ -
+ FSD (R-18; Ours) HFlip, Trans 8.43 9.68
+ FSD (R-50; Ours) HFlip, Trans 7.39 10.0

FastGAN [69] HFlip, Trans 34.5 6.52
+ Proj-GAN (R-18) [89] HFlip, Trans 8.48 9.40
+ FSD (R-18; Ours) HFlip, Trans 7.80 9.65

Table 8. Comparison of FID (lower is better)
and IS (higher is better) of VAE-based models
on unconditional generation. of CIFAR-10 and
CelebA. Bold and underline denote the best and
runner-up results, respectively.

CIFAR-10 CelebA

Method FID ↓ IS ↑ FID ↓
VAE [85] 115.8 3.8 -
VAE/GAN [85] 39.8 7.4 -
2s-VAE [16] 72.9 - 44.4
Perceptual AE [110] 51.5 - 13.8
NCP-VAE [3] 24.1 - 5.25
NVAE [101] 56.0 5.19 13.5
DC-VAE [85] 17.9 8.2 19.9

Lrecon (5) only 65.0 5.73 50.1
+ Adv. similarity (19) 46.8 6.29 25.1
+ Projection (R-18) 12.6 8.86 6.91

We also evaluate our proposed architecture and method as a generative modeling, especially focusing on the effectiveness
of the feature statistics encoder (Section F) and the adversarial similarity based training (Appendix F) of autoencoders on
CIFAR-10 [62] and CelebA [71] datasets. To this end, we consider an “unsupervised” version of NIBAE which omits the VIB
loss (Lβ

VIB; (14)) and the nuisance loss (Lnuis; (6)) in training, so that the model can assume an unconditional setup. Following
other baselines, here we compute FIDs from 50,000 generated samples against the training dataset.

Table 8 summarizes the results. Firstly, it confirms the effectiveness of adversarial similarity based training: when it is
solely applied upon Lrecon (“Lrecon only”; equivalent to [77]) it makes a significant improvements in both FID and IS. To
further investigate the effectiveness of our proposed feature statistics encoder, we also test a scenario that the encoder is fixed
by ResNet-18 pre-trained on ImageNet, akin to the setup of Table 7: we observe that our encoder design can surprisingly
benefit from using better representation, e.g., “+ Projection (R-18)” in Table 8 further improves FID on CIFAR-10 from
46.8 → 12.6, better than the best results among considered VAE-based models, by only training an MLP upon the feature
statistics of the (fixed) model. It is notable that the gain only appears when we apply the adversarial similarity based training:
i.e., even with the pre-trained model, it only achieves 67.5 in FID on CIFAR-10 without the training. This observation suggests
an interesting direction to scale-up autoencoder-based models by leveraging large, pre-trained representations, in a similar vein
as [89] as presented in the context of GANs. Figure 8 illustrates uncurated samples generated from NIBAE with Projection
trained on CelebA.



I.2. Qualitative results

Figure 7. Qualitative comparison on reconstructions from fixed samples of unconditional NIBAE model (and its ablations) on CelebA.

(a) Lrecon only (FID: 50.1) (b) + Adv. similarity (FID: 25.1) (c) + Projected (FID: 6.91)

Figure 8. Qualitative comparison on uncurated random samples generated from unconditional NIBAE model (and its ablations) on CelebA.

(a) Reconstruction (b) Sampling

Figure 9. Qualitative comparison on uncurated random samples from unconditional NIBAE model (and its ablations) on CIFAR-10.
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