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Adversarial Examples in DNNs

Deep neural networks (DNNs) are vulnerable to adversarial noises

Fundamental question: Can we train DNNs that are robust to such noises?
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The hardest part

[Goodfellow et al., ICLR 2015] Explaining and Harnessing Adversarial Examples.



Adversarial Training

Adversarial Training (AT) directly incorporate adversarial examples for training

Panda: 70% Attack Panda: 5%
fo |— Dog: 25% > fo |— Dog: 95%
Other: 5% Other: 0%

Use adversarial example to train the network

« Madry et al., 2018: generate adversarial example during training via min-max optimization
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One of the most basic form of AT

[Madry et al., ICLR 2018] Towards Deep Learning Models Resistant to Adversarial Attacks



Robust Overfitting [Rice et al., ICML 2020]

Problem: AT suffers from robust overfitting
« The robust error of test set, gradually increases from the middle of training

« Make practitioners consider a bag of tricks for a successful training, e.g., early stopping

= Test robust Test standard

Train robust == Train standard

overfitting occurs
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[Rice et al., ICML 2020] Overfitting in adversarially robust deep learning.



ROb“St OVEI‘fitti ng [Rice et al., ICML 2020]

Problem: AT suffers from robust overfitting
« The robust error of test set, gradually increases from the middle of training

« Make practitioners consider a bag of tricks for a successful training, e.g., early stopping

Only recently, advanced but sophisticated training schemes were proposed
« E.g., adversarial weight perturbation (Wu et al., 2020), self-training (Chen et al., 2021)
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= Is there a simpler and more intuitive approach?
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[Rice et al., ICML 2020] Overfitting in adversarially robust deep learning.
[We et al., NeurIPS 2020] Adversarial Weight Perturbation Helps Robust Generalization.
[Chen et al., ICLR 2021] Robust Overfitting may be mitigated by properly learned smoothening



Data Augmentations can reduce Overfitting
We found that data augmentations (DAs) is important for robust overfitting

||§ﬂax< LcE (f@( (x) + 5),y) where T ~ Tconven
co € random cropping, horizonal flip

« 1) Conventional DAs, e.g., cropping, is already somewhat useful for reducing robust overfitting
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Data Augmentations can reduce Overfitting

We found that data augmentations (DAs) is important for robust overfitting

max Lcg (f@ (T(ZE) + 6) = y) where T ~ 7-conven U 7;dd
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« 1) Conventional DAs, e.g., cropping, is already somewhat useful for reducing robust overfitting

« 2) Additional DAs to conventional choices, e.g., AutoAugment, is effective to reduce overfitting
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Consistency Regularization for AT
Consistency regularization (CR) can further improve robust generalization!

JS(fG(Tl(w) +6157) || fo(To(z) +52;T)) where Ty,To ~ T

temperature () scaled classifier independently sampled augmentation

« The proposed scheme is easy-to-use, and flexible (can be applied to various AT schemes)



Consistency Regularization for AT
Consistency regularization (CR) can further improve robust generalization!

JS(fO(Tl(I) +6157) || fo(Ta(x) +52;T)) where T1,To ~ T

temperature (7) scaled classifier independently sampled augmentation

« The proposed scheme is easy-to-use, and flexible (can be applied to various AT schemes)
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Consistency Regularization for AT
Consistency regularization (CR) can further improve robust generalization!

JS(fO(Tl(I) +6157) || fo(Ta(x) +52;T)) where T1,To ~ T

temperature (7) scaled classifier independently sampled augmentation

« The proposed scheme is easy-to-use, and flexible (can be applied to various AT schemes)

: exp(20/7) alin..
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T . temperature
z;: logit of class i Use smalit to
‘ sharpen the distribution
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Consistency Regularization for AT

f Panda: 70% \\ Attack direction itself contains intrinsic information
g |~ Bear: 25%

Other: 5% . Most frequently attacked class is the most confusing class
k
argmax; ., 9( )(:1:): top-1 prediction except the true class
Panda: 5%
— Bear: 95% . . . .. : . .
T oﬁﬁ;n 0% « Matching the attack direction injects a strong inductive bias!

T +0
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Consistency Regularization for AT

T +0

Panda: 70%
fg = Bear: 25%
Other: 5%

Panda: 5%
fg = Bear: 95%
Other: 0%

7
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C\ Attack direction consistency is important

« Utilizing conventional consistency can degrade the accuracy

Loss Clean PGD-100
AT (3) 85.41 55.18
AT (3) + previous CR (5)  88.01 53.11
AT (3) + proposed CR (4) 86.45 56.38
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Experimental Results

Consistency regularization demonstrates the effectiveness mainly for three parts

« 1) Reduce robust overfitting (+ improves robustness also)

Dataset

(Architecture) Method Clean PGD-20 PGD-100 CWoo AutoAttack
Standard (Madry et al. 2018) | 84.57 (83.43) 45.04 (52.82) 44.86(52.67) 44.31(50.66) 40.43 (47.63)
+ Consistency 86.45 (85.25) 56.51(57.53) 56.38 (57.39) 52.45(52.70) 48.57 (49.05)
CIFAR-10 TRADES (Zhang et al. 2019) | 82.87 (82.13) 50.95 (53.98) 50.83 (53.85) 49.30 (51.71) 46.32(49.32)
(PreAct-ResNet-18)  + Consistency 83.63 (83.55) 55.00 (55.16) 54.89 (54.98) 49.91 (50.67) 47.68 (49.01)
MART (Wang et al. 2020) 82.63 (77.00) 51.12(54.83) 50091 (54.74) 46.92(49.26) 43.46 (46.74)
+ Consistency 83.43 (81.89) 59.59 (60.48) 59.52(60.47) 51.78 (51.83) 48.91 (48.95)
Standard (Madry et al. 2018) | 86.37 (87.55) 50.16 (55.86) 49.80 (55.65) 49.25(54.45) 45.62(51.24)
+ Consistency 89.82 (89.93) 58.63 (61.11) 58.41(60.99) 56.38 (57.80) 52.36 (54.08)
CIFAR-10 TRADES (Zhang et al. 2019) | 85.05(84.30) 51.20(57.34) 50.89 (57.20) 50.88 (55.08) 46.17 (53.02)
(WideResNet-34-10) + Consistency 87.71 (87.92) 58.39(59.12) 58.19(58.99) 54.84 (55.97) 51.94 (53.11)
MART (Wang et al. 2020) 85.75(83.98) 49.31(57.28) 49.06 (57.22) 48.05(53.21) 44.96 (50.62)
+ Consistency 87.17 (85.81) 63.26 (64.95) 62.81(64.80) 57.46 (56.24) 52.41 (53.33)
CIFAR-100 Standard (Madry et al. 2018) | 57.13 (5§7.10) 22.36(29.67) 22.25(29.65) 21.97(27.99) 19.85(25.38)
(PreAct-ResNet-18)  + Consistency 62.73 (61.62) 30.75(32.33) 30.62 (32.24) 27.63 (28.39) 24.55 (25.52)
Tiny-ImageNet Standard (Madry et al. 2018) | 41.54 (45.26) 11.71(20.92) 11.60(20.87) 11.20(18.72) 9.63 (16.03)
(PreAct-ResNet-18)  + Consistency 50.15 (4946) 21.33(23.31) 21.24(23.24) 19.08 (20.29) 15.69 (16.90)
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Experimental Results

Consistency regularization demonstrates the effectiveness mainly for three parts

« 2) Robust against unseen adversaries [Tramer et al., 2019]

L‘ Unseen adversaries are hard to defense

« We train the model on [, perturbation and test on 4, [,

« We also test different attack radii of €

Figure 1: A depiction of the steepest descent directions
for £, £2, and ¢ norms. The gradient is the black arrow,
and the « radius step sizes and their corresponding steepest
descent directions /., /2, and ¢, are shown in blue, red, and
green respectively.

[Tramer et al., NeurIPS 2019] Adversarial training and robustness for multiple perturbations.
[Maini et al., ICML 2020] Adversarial Robustness Against the Union of Multiple Perturbation Models
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Experimental Results

Consistency regularization demonstrates the effectiveness mainly for three parts

« 2) Robust against unseen adversaries [Tramer et al., 2019]

Iz lo [

Dataset ~ Method \ ¢ 4/255 16/255 150/255 300/255 2000/255 4000/255
Standard (Madry etal. 2018) 6593 1923 5256  25.68 45.96 36.85
+ Consistency 7374 2347 6581  36.87 58.66 50.79
ClFAR.jo  TRADES (Zhangetal 2019) 6830 2417 5614  28.94 44.08 29.58
i + Consistency 7033  26.52 63.70 39.16 56.48 48.32
MART (Wang etal. 2020) 6776 2336 5717 3098 46.61 34.63
+ Consistency 7267 3031 6617  43.76 60.57 54.19
CIFAR.1gp  Standard (Madryetal. 2018) 3614 737 2797 1198 30.48 27.29
+ Consistency 4611 1153 3977  20.69 36.04 3275
- Standard (Madry etal. 2018) 2323  2.69 2805  17.80 3330 31.55
Tiny-ImageNet '~ nistency 3418 574 4006  30.62 43.90 42.65

[Tramer et al., NeurIPS 2019] Adversarial training and robustness for multiple perturbations.
[Maini et al., ICML 2020] Adversarial Robustness Against the Union of Multiple Perturbation Models



Experimental Results

Consistency regularization demonstrates the effectiveness mainly for three parts

« 3) Robust against common corruptions [Hendrycks et al., 2019]

Method mCE | L | TN T R S T E 1 I © | menman
Standard Cross-entropy 27.02 50 - ..... ............. FTOTRIONTR FACSEN R F Rt ............ ......................... ...... . Standard AT + Augmentation L
Standard (Madry etal. 2018) 2403 o, 0O o . U§SenddAT Consistoney J
+ Consistency 21.83 ot R "5 A R A R R
TRADES (Zhang et al. 2019) 25.50 Ilﬂ 30- . . ............. ............. . : ............. ............. . ............. . ............. : . ............. . ...:. ..............
+ Consistency 23.95 I :
20 - WS et %2 ............. Rseradaspnsaven .......
MART (Wang et al. 2020) 26.20 ] : : : : : : : : :
+ Consistency 2441 10 T T : s p 8 PR f e S h S f
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Ss (7 6’78/0 Ay lse 2 / Dre, s,b:, Vse
Mean corruption error (mCE) of o o .
PreAct-ResNet-18 trained on CIFAR-10. Classification error (%) on each corruption type of CIFAR-10-C
[Hendrycks et al., ICLR 2019] Benchmarking Neural Network Robustness to Common Corruptions and Perturbations 16



Experimental Results

Consistency regularization demonstrates the effectiveness mainly for three parts

« Our method method somewhat surpass the performance of the recent reqularization technique

loc (Seen) 5 (Unseen) [; (Unseen)
Dhfased Nihod . PGD-100 CW,. AutoAttack PGD-100 PGD-100 PGD-100 PGD-100
anse S0 Al g155)  (8/255) (8/255) (150/255)  (300/255)  (2000/255)  (4000/255)
Standard (Madry et al. 2018) 8457 4486 4431 40.43 52.56 25.68 45.96 36.85
CIFAR-10 + AWP (Wu, Xia, and Wang 2020) 80.34 55.39 5231 49.60 61.39 36.05 56.30 48.37
+ Consistency 86.45 56.38 52.45 48.57 65.81 36.87 58.66 50.79
Standard (Madry et al. 2018) 5696 2086  21.20 18.93 27.65 11.08 26.49 21.48
CIFAR-100  + AWP (Wu, Xia, and Wang 2020) 5291  30.06  26.42 24.32 35.71 20.18 33.63 30.38
+ Consistency 62.73 30.62 27.63 24.55 39.77 20.69 36.04 32.75
Standard (Madry et al. 2018) 4154  11.60 11.20 9.63 28.05 17.80 33.30 31.55
Tiny-ImageNet + AWP (Wu, Xia, and Wang 2020) 4025  20.64 18.05 15.26 33.31 26.86 35.48 34.22
+ Consistency 50.15 21.24 19.08 15.69 40.06 30.62 43.90 42.65

[Wu et al., NeurIPS 2020] Adversarial Weight Perturbation Helps Robust Generalization



Ablation Study

We verify the effectiveness of each component
» (a) data augmentation, (b) consistency regularization loss

« The performance improves step by step with the addition of the component

Method PGD-100 mCE |

Standard (Madry et al. 2018) 44 .86 24.03
+ Cutout (DeVries and Taylor 2017) 49.95 24.05
+ AutoAugment (Cubuk et al. 2019) 55.18 23.38
+ Consistency 56.38 22.06

We also verify the effectiveness of the temperature scaling

 As our intuition, sharpening the prediction with small temperature shows an improvement

T 0.5 0.8 1.0 2.0 5.0
PGD-100 56.38 56.22 55.79 56.04 55.57
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Analysis on Data Augmentations

Which augmentation family improve the generalization in adversarial training?
« We observe that cropping, Cutout and color transformation shows effectiveness

« We hypothesize that sample diversity through augmentations is significant for the improvement

Crop
Color -

Cutout -

1st augmentation

e 18 B AR

(a) Original  (b) Crop & flip (c) Cutout (d) Color jitter (e) Color gray (f) Blur (g) Rotate

=t 2 . - . .
27 ot AY el L T JURRY Y

Blur -

Rotate

Visualization of augmentations

Crop Color Cutout Blur Rotate
2nd augmentation

PGD-100 accuracy (%)

under the composition of augmentations 19



Take-home message

Data augmentation is quite effective for preventing the robust overfitting

Consistency regularization can further improve the robustness

« However, one should match the attack direction to be consistent

Our method can improve robustness of

* (1) seen adversaries, (2) unseen adversaries, and (3) natural corruptions
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Thank you for your attention ©

Paper: https://arxiv.org/abs/2103.04623
Code: https://qgithub.com/alinlab/consistency-adversarial
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