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Deep neural networks (DNNs) are vulnerable to adversarial noises

Fundamental question: Can we train DNNs that are robust to such noises? 

Adversarial Examples in DNNs

[Goodfellow et al., ICLR 2015] Explaining and Harnessing Adversarial Examples.

a classifier The hardest part
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Adversarial Training (AT) directly incorporate adversarial examples for training

• Madry et al., 2018: generate adversarial example during training via min-max optimization

Adversarial Training

[Madry et al., ICLR 2018] Towards Deep Learning Models Resistant to Adversarial Attacks 3

One of the most basic form of AT
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Use adversarial example to train the network



Problem: AT suffers from robust overfitting
• The robust error of test set, gradually increases from the middle of training

• Make practitioners consider a bag of tricks for a successful training, e.g., early stopping

Robust Overfitting [Rice et al., ICML 2020]

[Rice et al., ICML 2020] Overfitting in adversarially robust deep learning. 4

overfitting occurs



Problem: AT suffers from robust overfitting
• The robust error of test set, gradually increases from the middle of training

• Make practitioners consider a bag of tricks for a successful training, e.g., early stopping

Only recently, advanced but sophisticated training schemes were proposed
• E.g., adversarial weight perturbation (Wu et al., 2020), self-training (Chen et al., 2021)

Robust Overfitting [Rice et al., ICML 2020]

[Rice et al., ICML 2020] Overfitting in adversarially robust deep learning.
[We et al., NeurIPS 2020] Adversarial Weight Perturbation Helps Robust Generalization.
[Chen et al., ICLR 2021] Robust Overfitting may be mitigated by properly learned smoothening 5

Is there a simpler and more intuitive approach? 



We found that data augmentations (DAs) is important for robust overfitting

• 1) Conventional DAs, e.g., cropping, is already somewhat useful for reducing robust overfitting

Data Augmentations can reduce Overfitting
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1) Conventional DAs

*HFlip: horizonal flip
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random cropping, horizonal flip



We found that data augmentations (DAs) is important for robust overfitting

• 1) Conventional DAs, e.g., cropping, is already somewhat useful for reducing robust overfitting

• 2) Additional DAs to conventional choices, e.g., AutoAugment, is effective to reduce overfitting

Data Augmentations can reduce Overfitting
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1) Conventional DAs 2) Additional DAs

*HFlip: horizonal flip
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+ AutoAugment
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Crop + HFlip + Cutout
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Consistency regularization (CR) can further improve robust generalization!

• The proposed scheme is easy-to-use, and flexible (can be applied to various AT schemes)

Consistency Regularization for AT
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Consistency regularization (CR) can further improve robust generalization!

• The proposed scheme is easy-to-use, and flexible (can be applied to various AT schemes)

Consistency Regularization for AT
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Consistency regularization (CR) can further improve robust generalization!

• The proposed scheme is easy-to-use, and flexible (can be applied to various AT schemes)

Consistency Regularization for AT
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independently sampled augmentationtemperature (𝜏) scaled classifier

𝜏 : temperature
𝑧!: logit of class 𝑖

𝜏 > 1

𝜏 < 1

Use small 𝜏 to 
sharpen the distribution



Consistency regularization (CR) can further improve robust generalization!

• The proposed scheme is easy-to-use, and flexible (can be applied to various AT schemes)

Consistency Regularization for AT
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temperature (𝜏) scaled classifier independently sampled augmentation

Panda: 70%
Bear: 25%
Other: 5%

Attack direction itself contains intrinsic information

• Most frequently attacked class is the most confusing class

• Matching the attack direction injects a strong inductive bias!

:  top-1 prediction except the true class
Panda: 5%
Bear: 95%
Other: 0%



Consistency regularization (CR) can further improve robust generalization!

• The proposed scheme is easy-to-use, and flexible (can be applied to various AT schemes)

Consistency Regularization for AT
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temperature (𝜏) scaled classifier independently sampled augmentation

Panda: 70%
Bear: 25%
Other: 5%

Attack direction consistency is important

• Utilizing conventional consistency can degrade the accuracy
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Bear: 95%
Other: 0%



Consistency regularization demonstrates the effectiveness mainly for three parts 
• 1) Reduce robust overfitting (+ improves robustness also)

Experimental Results
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Consistency regularization demonstrates the effectiveness mainly for three parts 
• 2) Robust against unseen adversaries [Tramer et al., 2019]

Experimental Results
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[Tramer et al., NeurIPS 2019] Adversarial training and robustness for multiple perturbations.
[Maini et al., ICML 2020] Adversarial Robustness Against the Union of Multiple Perturbation Models

Unseen adversaries are hard to defense

• We train the model on 𝑙! perturbation and test on 𝑙", 𝑙#

• We also test different attack radii of 𝜖



Consistency regularization demonstrates the effectiveness mainly for three parts 
• 2) Robust against unseen adversaries [Tramer et al., 2019]

Experimental Results
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[Tramer et al., NeurIPS 2019] Adversarial training and robustness for multiple perturbations.
[Maini et al., ICML 2020] Adversarial Robustness Against the Union of Multiple Perturbation Models



Consistency regularization demonstrates the effectiveness mainly for three parts 
• 3) Robust against common corruptions [Hendrycks et al., 2019]

Experimental Results

16[Hendrycks et al., ICLR 2019] Benchmarking Neural Network Robustness to Common Corruptions and Perturbations

Mean corruption error (mCE) of 
PreAct-ResNet-18 trained on CIFAR-10. Classification error (%) on each corruption type of CIFAR-10-C



Consistency regularization demonstrates the effectiveness mainly for three parts 
• Our method method somewhat surpass the performance of the recent regularization technique

Experimental Results

17[Wu et al., NeurIPS 2020] Adversarial Weight Perturbation Helps Robust Generalization



We verify the effectiveness of each component 
• (a) data augmentation, (b) consistency regularization loss

• The performance improves step by step with the addition of the component

We also verify the effectiveness of the temperature scaling
• As our intuition, sharpening the prediction with small temperature shows an improvement

Ablation Study
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Which augmentation family improve the generalization in adversarial training?
• We observe that cropping, Cutout and color transformation shows effectiveness 

• We hypothesize that sample diversity through augmentations is significant for the improvement

Analysis on Data Augmentations
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PGD-100 accuracy (%) 
under the composition of augmentations

Visualization of augmentations



Data augmentation is quite effective for preventing the robust overfitting

Consistency regularization can further improve the robustness
• However, one should match the attack direction to be consistent

Our method can improve robustness of
• (1) seen adversaries, (2) unseen adversaries, and (3) natural corruptions

Take-home message
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Thank you for your attention J

Paper: https://arxiv.org/abs/2103.04623
Code: https://github.com/alinlab/consistency-adversarial
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https://arxiv.org/abs/2103.04623
https://github.com/alinlab/consistency-adversarial

