Consistency Regularization for Adversarial Robustness KAIST

Jihoon Tack¹, Sihyun Yu¹, Jongheon Jeong¹, Minseon Kim¹, Sung Ju Hwang^{1,2}, Jinwoo Shin¹

Korea Advanced Institute of Science and Technology (KAIST)¹, AITRICS²

TL;DR. We propose an effective consistency regularization technique that prevents robust overfitting by forcing the distribution of attacked augmentations from the same input to be similar

Introduction

 $f_{\theta}(x)$

Deep neural networks (DNNs) are vulnerable to adversarial noises [1]

 $f_{\theta}(x+\delta)$

Goal: Train a DNN that is robust to such noise

 $f_{\theta}(x) = f_{\theta}(x+\delta), \quad \forall \delta : \|\delta\|_p < \epsilon$ a classifier The hardest part

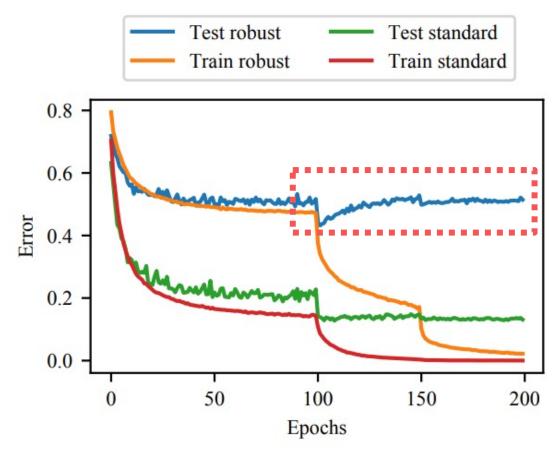
Adversarial training (AT): directly use adversarial examples for training Most promising ways to obtain adversarial robustness

$$\mathcal{L}_{AT} := \max_{\|\delta\|_{p} \le \epsilon} \mathcal{L}_{CE}(f_{\theta}(x+\delta), y)$$

Robust Overfitting

Problem. AT suffers from robust overfitting [3]

• Test robust error gradually increases from the middle of the training

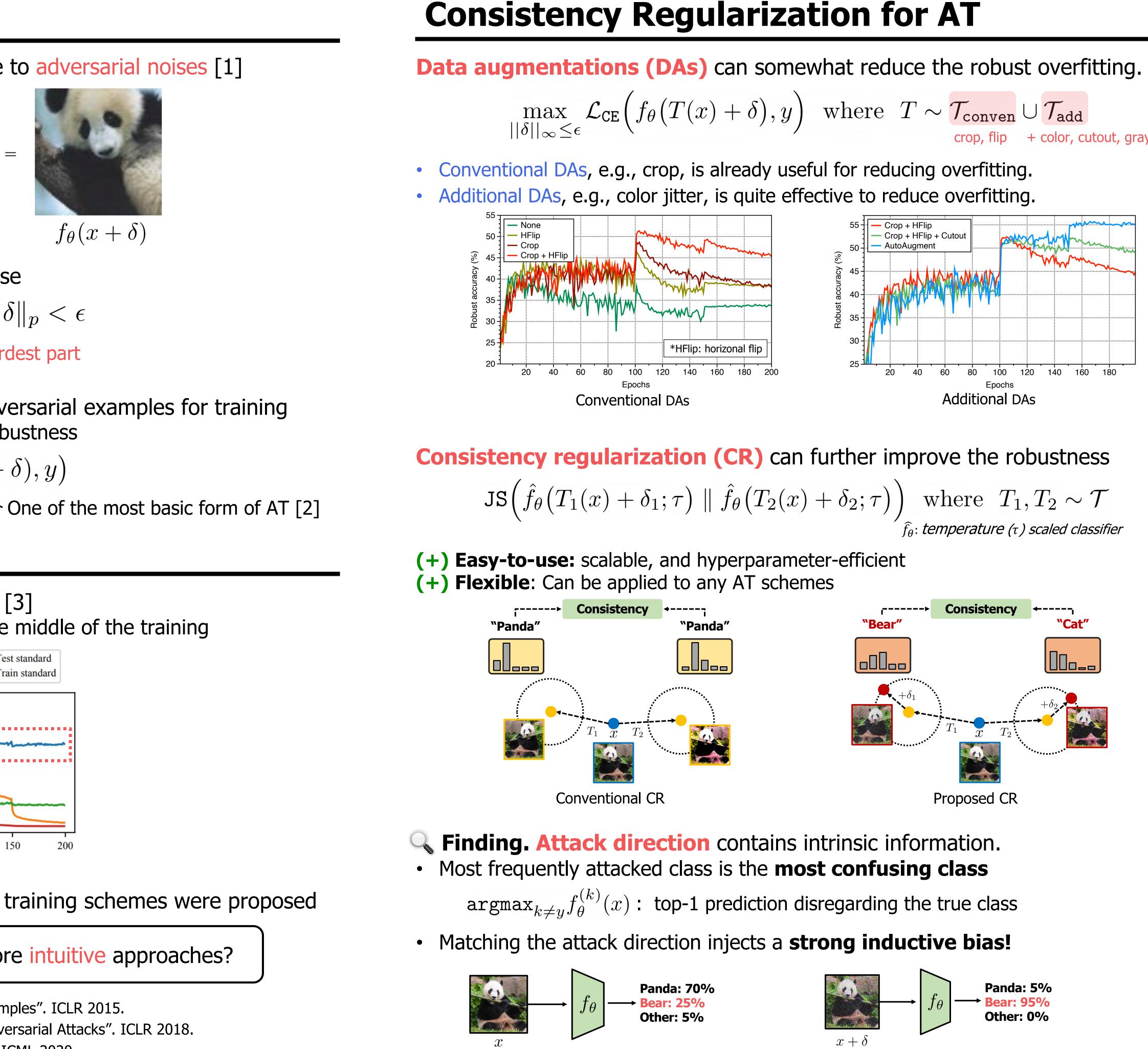


Only recently, advanced but **sophisticated** training schemes were proposed

Are there any simpler and more intuitive approaches?

[1] Goodfellow et al. "Explaining and Harnessing Adversarial Examples". ICLR 2015. [2] Madry et al. "Towards Deep Learning Models Resistant to Adversarial Attacks". ICLR 2018.

[3] Rice et al. "Overfitting in adversarially robust deep learning". ICML 2020.

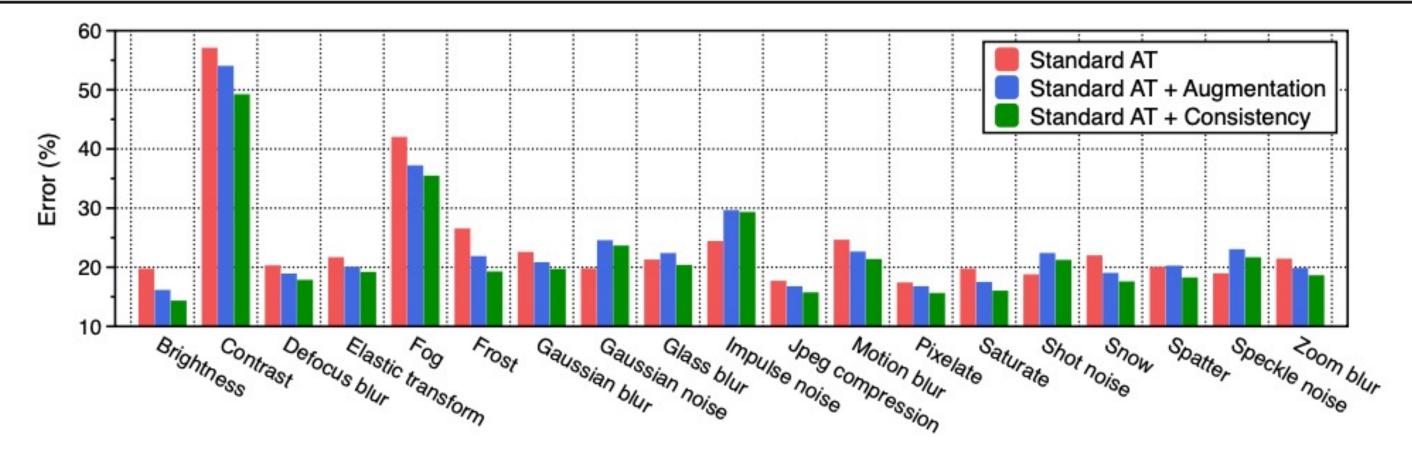


Experimental Results

Main results. Our method shows the effectiveness mainly for three parts: (1) reducing overfitting, (2) unseen adversaries, (3) common corruptions

Dataset (Architecture)	Method	Clean	PGD-20	PGD-100	CW_∞	AutoAttack
CIFAR-10 (PreAct-ResNet-18)	Standard (Madry et al. 2018) + Consistency	84.57 (83.43) 86.45 (85.25)	45.04 (52.82) 56.51 (57.53)	44.86 (52.67) 56.38 (57.39)	44.31 (50.66) 52.45 (52.70)	40.43 (47.63) 48.57 (49.05)
	TRADES (Zhang et al. 2019) + Consistency	82.87 (82.13) 83.63 (83.55)	50.95 (53.98) 55.00 (55.16)	50.83 (53.85) 54.89 (54.98)	49.30 (51.71) 49.91 (50.67)	46.32 (49.32) 47.68 (49.01)
	MART (Wang et al. 2020) + Consistency	82.63 (77.00) 83.43 (81.89)	51.12 (54.83) 59.59 (60.48)	50.91 (54.74) 59.52 (60.47)	46.92 (49.26) 51.78 (51.83)	43.46 (46.74) 48.91 (48.95)
CIFAR-10 (WideResNet-34-10)	Standard (Madry et al. 2018) + Consistency	86.37 (87.55) 89.82 (89.93)	50.16 (55.86) 58.63 (61.11)	49.80 (55.65) 58.41 (60.99)	49.25 (54.45) 56.38 (57.80)	45.62 (51.24) 52.36 (54.08)
	TRADES (Zhang et al. 2019) + Consistency	85.05 (84.30) 87.71 (87.92)	51.20 (57.34) 58.39 (59.12)	50.89 (57.20) 58.19 (58.99)	50.88 (55.08) 54.84 (55.97)	46.17 (53.02) 51.94 (53.11)
	MART (Wang et al. 2020) + Consistency	85.75 (83.98) 87.17 (85.81)	49.31 (57.28) 63.26 (64.95)	49.06 (57.22) 62.81 (64.80)	48.05 (53.21) 57.46 (56.24)	44.96 (50.62) 52.41 (53.33)
CIFAR-100 (PreAct-ResNet-18)	Standard (Madry et al. 2018) + Consistency	57.13 (57.10) 62.73 (61.62)	22.36 (29.67) 30.75 (32.33)	22.25 (29.65) 30.62 (32.24)	21.97 (27.99) 27.63 (28.39)	19.85 (25.38) 24.55 (25.52)
Tiny-ImageNet (PreAct-ResNet-18)	Standard (Madry et al. 2018) + Consistency	41.54 (45.26) 50.15 (49.46)	11.71 (20.92) 21.33 (23.31)	11.60 (20.87) 21.24 (23.24)	11.20 (18.72) 19.08 (20.29)	9.63 (16.03) 15.69 (16.90)

		l_∞		l_2		l_1	
Dataset	Method $\setminus \epsilon$	4/255	16/255	150/255	300/255	2000/255	4000/255
CIFAR-10	Standard (Madry et al. 2018) + Consistency	65.93 73.74	19.23 23.47	52.56 65.81	25.68 36.87	45.96 58.66	36.85 50.79
	TRADES (Zhang et al. 2019) + Consistency	68.30 70.33	24.17 26.52	56.14 63.70	28.94 39.16	44.08 56.48	29.58 48.32
	MART (Wang et al. 2020) + Consistency	67.76 72.67	23.36 30.31	57.17 66.17	30.98 43.76	46.61 60.57	34.63 54.19
CIFAR-100	Standard (Madry et al. 2018) + Consistency	36.14 46.11	7.37 11.53	27.97 39.77	11.98 20.69	30.48 36.04	27.29 32.75
Tiny-ImageNet	Standard (Madry et al. 2018) + Consistency	23.23 34.18	2.69 5.74	28.05 40.06	17.80 30.62	33.30 43.90	31.55 42.65



Analysis on attack directions.

- confusing class of 'clean' input.

arXiv

Github

77.45% out of the misclassified adversarial examples predicts the most

• i.e., most confident prediction expect for the true class