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Background: Adversarial Examples

Deep neural networks (DNNSs) are susceptible to adversarial noises 9

MSed 100
f(z +9)

f(z)

Fundamental question: Can we build DNNs that are robust to such noises?

flx) = f(z+9), |V6|:[[d]]2 <e
a class/;fier The hardest part

Image source: https://deep.ghost.io/robust-attribution/



Background: Adversarial Training

adversarial example
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Challenge: DNNs are too complex to regularize every f(x + 9)
« Adversarial training (AT) [Madry et al., 2018]"?

min E(x y) |Nax L(CE + 5, Y, f)
f ’ 0 f

adversarial example

* Only gives an empirical robustness
* |tis hard to guarantee that an AT-model is "indeed"” robust
« Harder to optimize and generalize [Schmidt et al., 2018]
*  Seems to require much larger network
« AT does not saturate even at ResNet-638 on ImageNet [Xie & Yuille, 2020]

Cohen et al., 2019] Certified adversarial robustness via randomized smoothing. ICML 2019.
Schmidt et al., 2018] Adversarially Robust Generalization Requires More Data, NeurlPS 2018.
Madry et al., 2018] Towards deep learning models resistant to adversarial attacks, ICLR 2018.
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[Xie & Yuille, 2020] Intriguing properties of adversarial training at scale, ICLR 2020.



Background: Randomized Smoothing

Challenge: DNNs are too complex to regularize every f(x + 9)
« Randomized smoothing (RS) instead constructs another classifier f’ from f

f(z) := argmax,cy {Pson0.02n) (f(z+6) =k)}

(Gaussian noise

“bird”

[Cohen et al., 2019] Certified adversarial robustness via randomized smoothing. ICML 2019.



Background: Randomized Smoothing

Challenge: DNNs are too complex to regularize every f(x + 9)
« Randomized smoothing (RS) instead constructs another classifier f from f

f(z) := argmax,cy {Pson0.02n) (f(z+6) =k)}

(Gaussian noise

A

« Then, f is much easier to obtain adversarial robustness

« Cohen et al. (2019): A provable guarantee on the robust radius of f in terms of f

Theorem Let p, := mlgx]P’a(f(x +d) = k). Then, the £, robust radius of f(:c) is lower-bounded by:

R(f;x) = min_ [|§]z >0 2" (ps)
flato)#f (@)

Gaussian CDF

[Cohen et al., 2019] Certified adversarial robustness via randomized smoothing. ICML 2019.



Background: Randomized Smoothing

Challenge: DNNs are too complex to regularize every f(x + 9)
« Randomized smoothing (RS) instead constructs another classifier f’ from f

f(z) := argmax,cy {Pson0.02n) (f(z+6) =k)}

(Gaussian noise

A

« Then, f is much easier to obtain adversarial robustness

PR “\ “certified radius”

Randomized _

Smoothing

)

[Cohen et al., 2019] Certified adversarial robustness via randomized smoothing. ICML 2019.



Robust Training for Smoothed Classifiers

Which f would maximize the robustness of f'?

» (Gaussian [Cohen et al., 2019]: Training with Gaussian augmentation

L™ = Esunr(0,021) [L(f(x +9),y)]

softmax outputs

More sophisticated training indeed improves certified robustness

*  SmoothAdv [Salman et al., 2019]: Adversarial training for f (approx.)
* Achieves state-of-the-art certified robustness

* MACER [zhai et al., 2020]: Maximizing a soft approx. of certified radius
* Consistency [Jeong and Shin, 2020]: Minimizing the variance of prediction over noise

[Cohen et al., 2019] Certified adversarial robustness via randomized smoothing. ICML 2019.

[Salman et al., 2019] Provably robust deep learning via adversarially trained smoothed classifiers. NeurlPS 2019.
[Zhai et al., 2020] MACER: attack-free and scalable robust training via maximizing certified radius. ICLR 2020.
[Jeong and Shin, 2020] Consistency Regularization for Certified Robustness of Smoothed Classifiers. NeurlPS 2020.




Motivation: Confidence and Robustness in RS

Remark: The prediction confidence p lower-bounds the adversarial robustness of f

Theorem Let p;, := m}gxIP’(;(f(:c +9) = k). Then, the £, robust radius of f(a:) is lower-bounded by:

R(f; r):= min ||d|]2 >0 - q)_l(pw)
f(x+8)#f(x) N

Gaussian CDF

Px

w
|

|— CR=0"(py)

Certified radius

[Cohen et al., 2019] Certified adversarial robustness via randomized smoothing. ICML 2019.



Motivation: Confidence and Robustness in RS

Remark: The prediction confidence p lower-bounds the adversarial robustness of f

Theorem Let p, := m]?XIP’(;(f(:U +9) = k). Then, the ¢, robust radius of f(x) is lower-bounded by:

A

R(fiz):= min_ [d]2 >0 @ (ps)
fe+8)#f(2) <

Gaussian CDF

* The higher pg, the better robustness at &
« Standard (non-smoothed) DNNs do not have this property

=) Will a better confidence calibration bring a more robust f’ ?
* Do current smoothed classifiers “well-calibrated” for unseen inputs?
« |f not, how will such inputs affect the (certified) robustness of f ?



SmoothMix: Confidence-calibrated Training of RS

Observation: f is often over-confident at nearby, off-class inputs of @

* Such inputs can negatively affect the robustness at @
* Due to the relationship: higher confidence — better robustness

over-confidence

CIFAR-10 (Test set; %) \ Clean =10 =20 =30 =40 &£=5.0

E[P(f(z+6)=vy)] | 664  47.1 243 14.2 11.3 10.7
Elmax.s, P(f(z +6) =c)] | 242  37.8 59.5 71.8 78.5 82.0

Max. off-class confidence

b QS

* Anunrestricted adversarial search can effectively find the “over-confident” inputs:

V. J(E®) 1
=(t+1) . z(8) z — — .
z =" + - V. J GO, where J(z):= —log Ez Fy(z + 6;)
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SmoothMix: Confidence-calibrated Training of RS

Observation: f is often over-confident at nearby, off-class inputs of @

f]/.r

@) How can we effectively control the confidence of (T) while keeping those of & ?

~N

Mix-Up training [Zhang et al. 2018] between X and 7(T)

It keeps the original confidence at x of Fy(ac) =L 5" F,(x)

T m

The over-confident input #(T) is regularized toward the uniform confidence

(1, 1)

Lmix = IE6~N(O,0‘21) [L(F(xmix + 5), ymiX)]
2= (1 -\ -z+ X 2D (2,9)
ymix — (1 - /\) ) ﬁ'(x) + - % (x2ay2)

™~

“uniform” confidence

g )

[Zhang et al., 2017] mixup: Beyond Empirical Risk Minimization, ICLR 2018.




SmoothMix: Confidence-calibrated Training of RS

Observation: f is often over-confident at nearby, off-class inputs of @

-
How can we effectively control the confidence of z(*) while keeping those of  ?

Mix-Up training [Zhang et al. 2018] between X and 7(T)

|t keeps the original confidence at x of Fy(ac) =L 5" F,(x)

T m

*  The over-confident input () is regularized toward the uniform confidence

-o- P("deer")
-0~ P("cat")
0 0.2 0.4 0.6 0.8 1.0

Mixing Ratio
|” l ‘ Y Adversarial E

[Zhang et al., 2017] mixup: Beyond Empirical Risk Minimization, ICLR 2018.
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SmoothMix: Confidence-calibrated Training of RS

Observation: f is often over-confident at nearby, off-class inputs of @

-
How can we effectively control the confidence of z(*) while keeping those of  ?

Mix-Up training [Zhang et al. 2018] between X and 7(T)

|t keeps the original confidence at x of Fy(ac) =L 5" F,(x)

T m

*  The over-confident input () is regularized toward the uniform confidence
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~

[Zhang et al., 2017] mixup: Beyond Empirical Risk Minimization, ICLR 2018.
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SmoothMix: Confidence-calibrated Training of RS

SmoothAdv [Salman et al,, 2019]: Applying AT for f canimprove RS
« AT assumes a hard e-ball = RS may already offer the robustness under this constraint

2" —x||2<e 2" —z[|2<e

R 1
P = Fiz' y) ~ —log | — Y Fy(z’ +
£ = argmax L(F;z’,y) ~ argmax ( og (m i y(x + )))

SmoothMix proposes an “unrestricted” way to apply AT for smoothed classifiers
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(a) Adversarial training [40] (b) SmoothAdyv [49] (¢) SmoothMix (Ours)

[Salman et al., 2019] Provably robust deep learning via adversarially trained smoothed classifiers. NeurlPS 2019,
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SmoothMix: Confidence-calibrated Training of RS

SmoothMix = A new AT method specially designed for RS

1. Unrestrictive search of adversarial examples (AESs)
Focuses on finding nearby off-class, but over-confident inputs

2. Minimizes the mixup loss between Clean & AE
The AEs are regularized toward the uniform confidence

The final loss of SmoothMix is given by:
L . — Lnat ‘|‘ 77 ] Lmix

 Natural loss: L™* := Es [L(F(z +9),y)]
> Robust loss: L™ := Es.n(0,021) [L(F (2™ + 8),y™)]
n > 0: a hyperparameter to control the trade-off between accuracy & robustness

15



Experimental Results

We evaluate ¥, certified robustness of various training methods for RS:
» (Gaussian augmentation [Cohen et al., 2019]
*  SmoothAdv [Salman et al., 2019]
 Stability training [Li et al., 2019]
« MACER [Zhai et al., 2020]
* Consistency [Jeong and Shin, 2020]

Evaluation metrics
1. Certified test accuracy @ radius r [Cohen et al., 2019]

. % test dataset that (a) f(z) =y, and (b) CR(f,o0,2) :=0- <I>_1(pA) > r
2. Average certified radius (ACR) [Zhai et al., 2020]
1
Z CR(f, g, 37) . 1f(x):y

’Dtest | (:B,y) EDyect

ACR :=

[Cohen et al., 2019] Certified adversarial robustness via randomized smoothing. ICML 2019.

[Salman et al., 2019] Provably robust deep learning via adversarially trained smoothed classifiers. NeurlPS 20189,

[Li et al.,, 2019] Certified adversarial robustness with additive noise. NeurlPS 2019.

[Zhai et al., 2020] MACER: attack-free and scalable robust training via maximizing certified radius. ICLR 2020.
[Jeong and Shin, 2020] Consistency Regularization for Certified Robustness of Smoothed Classifiers. NeurlPS 2020.
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Experimental Results

Results on MNIST

* SmoothMix consistently improves ACR

* The trends hold for a wide range of o € {0.25,0.5, 1.0}
« Shows better trade-offs compared to, e.g., SmoothAdv

« 7 effectively controls the trade-off: Accuracy < Robustness
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Experimental Results

Results on CIFAR-10/1I mageNet o Models (ImageNet) ACR 00 05 10 15 20 25 30 35
Gaussian (Cohen et al., 2019) 0733 57 46 37 29 0 0 0 0
e The nroposed method successfully scales Consistency (Jeong & Shin, 2020) 0.822 55 50 44 34 0 0 0 O
p | P Net d Y 050 SmoothAdv (Salmanetal.,2019) 0825 54 49 43 37 0 0 0 0
up to ImageNet dataset SmoothMix (Ours) 0846 55 50 43 38 0 0 0 0
: A Gaussian (Cohen et al., 2019) 0875 44 38 33 26 19 15 12 9
[ ] -
Still exhibits bette.r.trade offs between Consistency (Jeong & Shin, 2020) 0982 41 37 32 28 24 21 17 14
accuracy and certified robustness .00 SmoothAdv (Salmanetal, 2019)  1.040 40 37 34 30 27 25 20 I5
SmoothMix (Ours) 1.047 40 37 34 30 26 24 20 17
o Models (CIFAR-10) ACR | 000 025 050 075 100 125 150 175
Gaussian (Cohen et al., 2019) 0424 | 766 612 422 251 00 00 00 00 T = Gauesan T —Gaussian
Stability training (Lietal, 2019) 0421 | 723 580 433 273 00 00 00 00  »o8f- — SmoothAdy > T v
SmoothAdv” (Salmanetal, 2019)  0.544 | 734 656 570 475 00 00 00 00 £ R~RNSG nceR 8 O MACER
025 MACER" (Zhai et al., 2020) 0531 | 795 69.0 558 406 00 00 00 00 g 06 \ i+ — SmoothMix 8 | SN ey
Consistency (Jeong & Shin, 2020) 0.552 | 758 67.6 58.1 46.7 0.0 0.0 0.0 0.0 B o4 i N : 3 04 S
SmoothMix (Ours) 0553 | 771 679 579 467 00 00 00 00 % % o2
+ One-step adversary 0548 | 742 661 574 477 00 00 00 00  ©02 : ° Q—
Gaussian (Cohen et al., 2019) 0525 | 657 549 428 325 220 141 83 39 ob— . . N o S
Stability training (Li et al., 2019)  0.521 | 60.6 51.5 414 325 239 153 96 5.0 ° 2 s ° 0 Radus 20
SmoothAdv* (Salman et al., 2019) 0.684 | 653 57.8 499 417 337 260 19.5 129
0.50 MACER" (Zhai et al., 2020) 0691 | 642 575 499 423 348 276 202 126 (@) o=0.25 (b) 0 =0.50
Consistency (Jeong & Shin, 2020)  0.720 | 643 575 50.6 432 362 295 228 16.1 o .
SmoothMix (Ours) 0715 | 650 567 492 412 345 296 235 18.1 Certified test accuracy @ radius r
+ One-step adversary 0.737 | 61.8 559 495 433 372 31.7 257 19.8




Summary

We propose a new form of adversarial training for RS
« |t leverages "Confidence — Robustness” in the world of RS
« Nearby, over-confident inputs may harm the robustness of in-distribution samples
* A mixup-based loss could effectively calibrate these over-confident inputs

Randomized smoothing has a great potential toward reliable deep learning

* RS gives a provable guarantee on adversarial robustness
* |t also offers an easier & attack-free way to train a robust model than AT
« We hope our work could be a step toward reducing the gap between RS and AT

Please drop by our poster session for more information!
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