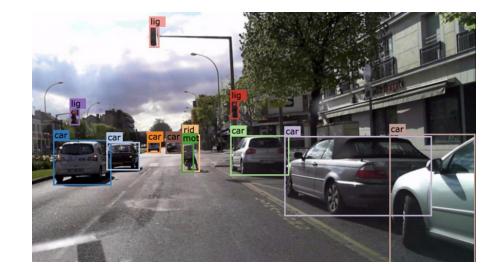
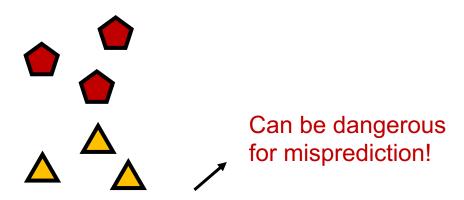

CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances

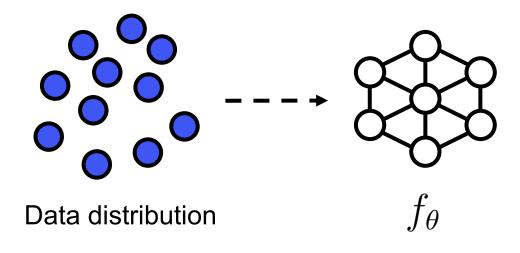
Jihoon Tack*, Sangwoo Mo*, Jongheon Jeong, Jinwoo Shin Korea Advanced Institute of Science and Technology (KAIST)


1


Problem: Novelty/Out-of-distribution Detection

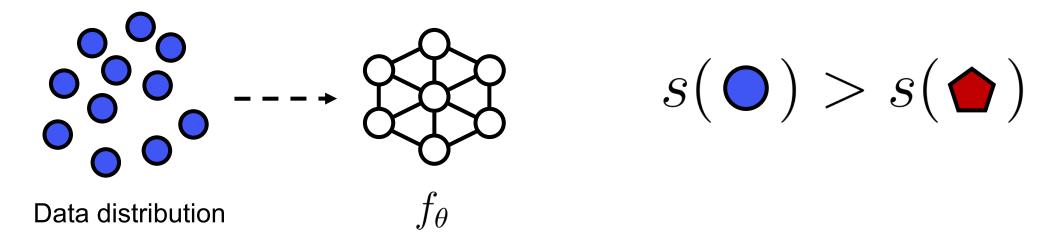
Identifying whether a given sample belongs to the data distribution

Training samples


Out-of-distribution samples

Problem: Novelty/Out-of-distribution Detection

Identifying whether a given sample belongs to the data distribution



$$s(\bigcirc) > s(\bigcirc)$$

- Learn a representation f_{θ} from the data distribution
- **Define a detection score** s(.) utilizing the representation f_{θ}

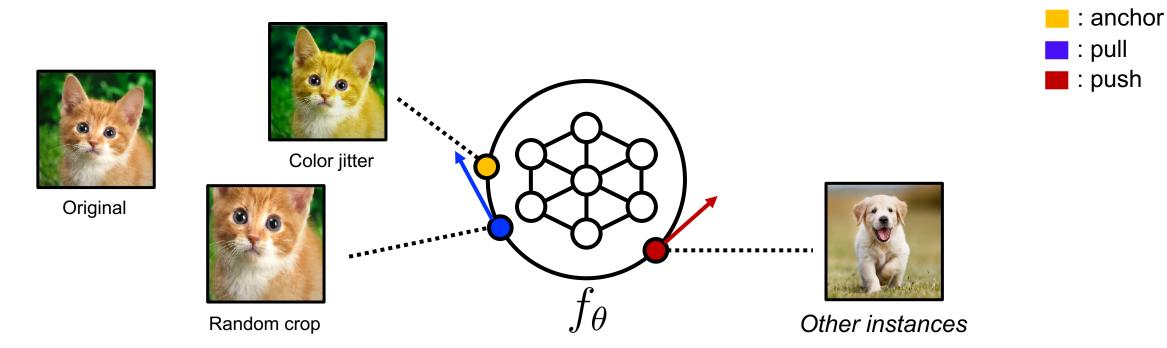
Related work: Novelty/Out-of-distribution Detection

- Related works can be categorized as
 - (a) density-based (b) reconstruction-based (c) one-class classifier (d) self-supervised method

- Directly modeling the distribution p(x) is an ideal solution, but known to be hard
- Recently, self-supervised learning method shows dramatic performance
 - E.g., Learn to classify applied transformation (data augmentation)

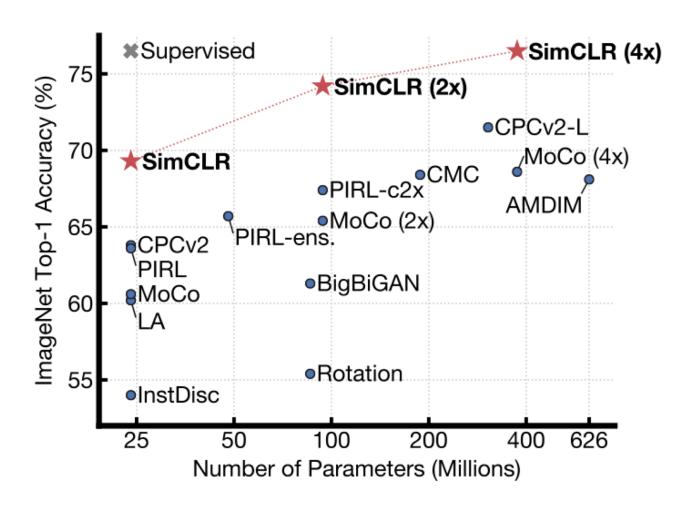
Related work: Novelty/Out-of-distribution Detection

- Related works can be categorized as
 - (a) density-based (b) reconstruction-based (c) one-class classifier (d) self-supervised method

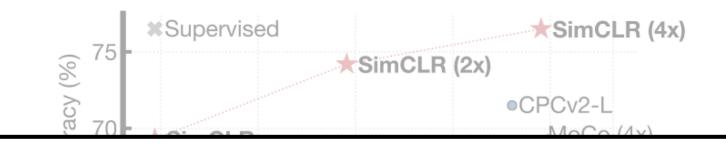


Can we use more advanced self-supervised learning framework?

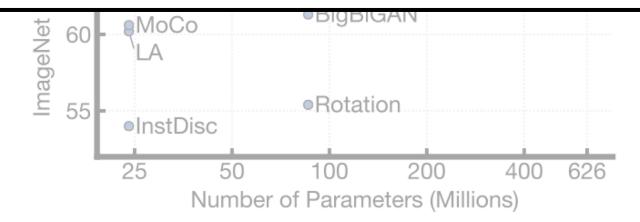
- Directly modeling the distribution p(x) is an ideal solution, but known to be hard
- Recently, self-supervised learning method shows dramatic performance
 - E.g., Learn to classify applied transformation (data augmentation)


Self-Supervised Learning: Contrastive Learning

- Learn the representation that encodes the similarity between data points
- We use simple contrastive learning (SimCLR) [1]:
 - pull the <u>same samples</u> of different augmentations
 - push the <u>different samples</u>

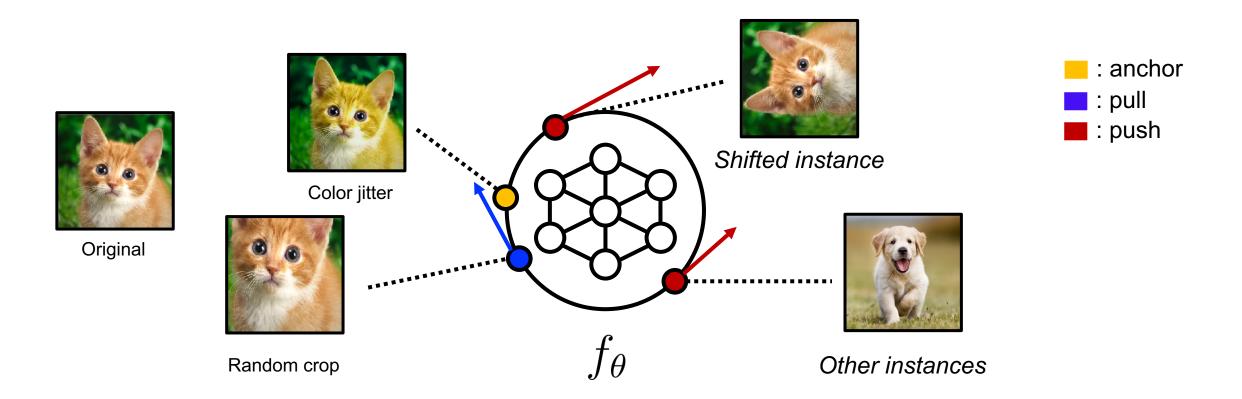

Self-Supervised Learning: Contrastive Learning

We can learn discriminative representation without any label

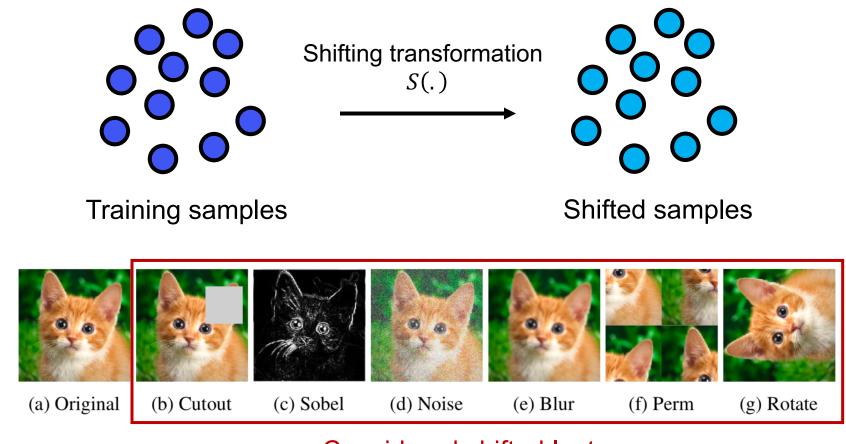


Self-Supervised Learning: Contrastive Learning

We can learn discriminative representation without any label

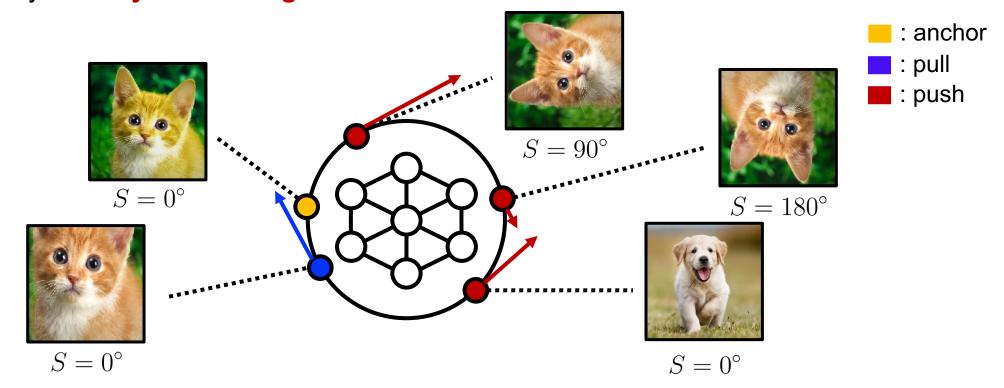


Lets utilize the power of contrastive learning to OOD detection


Summary: Contrasting Shifted Instances

- We utilize the power of contrastive learning for OOD detection
- We further improve OOD detection by using shifted instances

Contrasting Shifted Instances (CSI): Representation


• We train the representation via contrastive learning with shifted instances:

Considered shifted Instance

Contrasting Shifted Instances (CSI): Representation

- We train the representation via contrastive learning with shifted instances:
 - We found contrastively learned representation [1] is already effective at OOD detection
 - CSI further improves by pushing the shifted samples in addition to the different samples
 - Additionally classify the shifting transformation

Contrasting Shifted Instances (CSI): Detection Score

- Detection score for contrastively learned representation:
 - The cosine similarity to the nearest training sample
 - The *norm* of the representation

$$s_{\text{con}}(x; \{x_m\}) := \max_{m} \ \text{sim}(z(x_m), z(x)) \cdot \parallel z(x) \parallel .$$
 $score: cosine similarity * norm$

- Further improving the detection score by utilizing the shifting transformation:
 - $s_{\text{con-SI}}(x, \{x_m\})$: ensemble the score $s_{\text{con}}(x; \{x_m\})$ over all shifting transformation
 - $s_{cls-SI}(x)$: confidence of the shifting transformation classifier

$$s_{\text{CSI}}(x; \{x_m\}) := s_{\text{con-SI}}(x; \{x_m\}) + s_{\text{cls-SI}}(x)$$

Contrasting Shifted Instances (CSI): OOD-ness

- OOD-ness: How to choose the shifting transformation?
 - The transformation that generates the most OOD-like yet semantically meaningful samples
 - We choose the transformation with the high OOD-ness (AUROC on vanilla SimCLR)

Contrasting Shifted Instances (CSI): Extension

- We also extend CSI for training confidence-calibrated classifier [2]:
 - Accurate on predicting label y when input x is in-distribution
 - Confidence $s_{\sup}(x) := \max_{y} p(y|x)$ of the classifier is well-calibrated

 - •: in-distribution *correct* sample •: in-distribution *in-correct* sample
- : OOD sample

$$s_{\sup}(\bigcirc) > s_{\sup}(\bigcirc)$$

$$s_{\sup}(\bigcirc) > s_{\sup}(\bigcirc)$$

- We adapt the idea of CSI to the supervised contrastive learning (SupCLR) [3]:
 - SupCLR contrasts samples in class-wise, instead of in instance-wise
 - Similar to CSI, sup-CSI consider shifted instance as a different class's sample

Experiments: Unlabeled One-class OOD

- CSI achieves the state-of-the-art performance in all tested scenarios:
 - For unlabeled one-class OOD detection, outperforms prior methods in every classes

(a) One-class CII	FAR-10
-------------------	--------

Method	Network	Plane	Car	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck	Mean
OC-SVM* [64]	-	65.6	40.9	65.3	50.1	75.2	51.2	71.8	51.2	67.9	48.5	58.8
DeepSVDD* [60]	LeNet	61.7	65.9	50.8	59.1	60.9	65.7	67.7	67.3	75.9	73.1	64.8
AnoGAN* [63]	DCGAN	67.1	54.7	52.9	54.5	65.1	60.3	58.5	62.5	75.8	66.5	61.8
OCGAN* [55]	OCGAN	75.7	53.1	64.0	62.0	72.3	62.0	72.3	57.5	82.0	55.4	65.7
Geom* [17]	WRN-16-8	74.7	95.7	78.1	72.4	87.8	87.8	83.4	95.5	93.3	91.3	86.0
Rot* [27]	WRN-16-4	71.9	94.5	78.4	70.0	77.2	86.6	81.6	93.7	90.7	88.8	83.3
Rot+Trans* [27]	WRN-16-4	77.5	96.9	87.3	80.9	92.7	90.2	90.9	96.5	95.2	93.3	90.1
GOAD* [2]	WRN-10-4	77.2	96.7	83.3	77.7	87.8	87.8	90.0	96.1	93.8	92.0	88.2
Rot [27]	ResNet-18	78.3±0.2	94.3 ± 0.3	86.2 ± 0.4	80.8 ± 0.6	89.4 ± 0.5	89.0 ± 0.4	88.9 ± 0.4	$95.1{\scriptstyle\pm0.2}$	92.3 ± 0.3	89.7±0.3	88.4
Rot+Trans [27]	ResNet-18	80.4±0.3	96.4 ± 0.2	85.9 ± 0.3	81.1 ± 0.5	91.3 ± 0.3	89.6 ± 0.3	89.9 ± 0.3	95.9 ± 0.1	$95.0{\scriptstyle\pm0.1}$	92.6 ± 0.2	89.8
GOAD [2]	ResNet-18	75.5 ± 0.3	$94.1{\scriptstyle\pm0.3}$	$81.8{\scriptstyle\pm0.5}$	$72.0{\scriptstyle\pm0.3}$	83.7 ± 0.9	84.4 ± 0.3	$82.9{\scriptstyle\pm0.8}$	$93.9{\scriptstyle\pm0.3}$	$92.9{\scriptstyle\pm0.3}$	89.5 ± 0.2	85.1
CSI (ours)	ResNet-18	89.9 ±0.1	99.1 ±0.0	93.1 ±0.2	86.4 ±0.2	93.9 ±0.1	93.2 ±0.2	95.1 ±0.1	98.7 ±0.0	97.9 ±0.0	95.5 ±0.1	94.3

(b) One-class CIFAR-100 (super-class)

(c) One-class ImageNet-30

Method	Network	AUROC	Method	Network	AUROC
OC-SVM* [64]	-	63.1	Rot* [27]	ResNet-18	65.3
Geom* [17]	WRN-16-8	78.7	Rot+Trans* [27]	ResNet-18	77.9
Rot [27]	ResNet-18	77.7	Rot+Attn* [27]	ResNet-18	81.6
Rot+Trans [27]	ResNet-18	79.8	Rot+Trans+Attn* [27]	ResNet-18	84.8
GOAD [2]	ResNet-18	74.5	Rot+Trans+Attn+Resize* [27]	ResNet-18	85.7
CSI (ours)	ResNet-18	89.6	CSI (ours)	ResNet-18	91.6

Experiments: Unlabeled Multi-class OOD

- CSI achieves the state-of-the-art performance in all tested scenarios:
 - For unlabeled multi-class OOD detection, outperforms prior methods in every OOD datasets

(a) Unlabeled CIFAR-10

		${\sf CIFAR10} \rightarrow$									
Method	Network	SVHN	LSUN	ImageNet	LSUN (FIX)	ImageNet (FIX)	CIFAR-100	Interp.			
Likelihood*	PixelCNN++	8.3	-	64.2	-	-	52.6	52.6			
Likelihood*	Glow	8.3	-	66.3	-	-	58.2	58.2			
Likelihood*	EBM	63.0	-	-	-	-	-	70.0			
Likelihood Ratio* [55]	PixelCNN++	91.2	-	-	-	-	-	-			
Input Complexity* [61]	PixelCNN++	92.9	-	58.9	-	-	53.5	-			
Input Complexity* [61]	Glow	95.0	-	71.6	-	-	73.6	-			
Rot [25]	ResNet-18	97.6±0.2	89.2±0.7	90.5±0.3	77.7±0.3	83.2±0.1	79.0±0.1	64.0±0.3			
Rot+Trans [25]	ResNet-18	$97.8{\scriptstyle\pm0.2}$	$92.8{\scriptstyle\pm0.9}$	94.2 ± 0.7	81.6 ± 0.4	86.7 ± 0.1	82.3 ± 0.2	$68.1{\scriptstyle\pm0.8}$			
GOAD [2]	ResNet-18	$96.3{\scriptstyle\pm0.2}$	$89.3{\scriptstyle\pm1.5}$	91.8 ± 1.2	78.8 ± 0.3	83.3 ± 0.1	77.2 ± 0.3	59.4 ± 1.1			
CSI (ours)	ResNet-18	99.8 ±0.0	97.5 ±0.3	97.6 ±0.3	90.3 ±0.3	93.3 ±0.1	89.2 ±0.1	79.3 ±0.2			

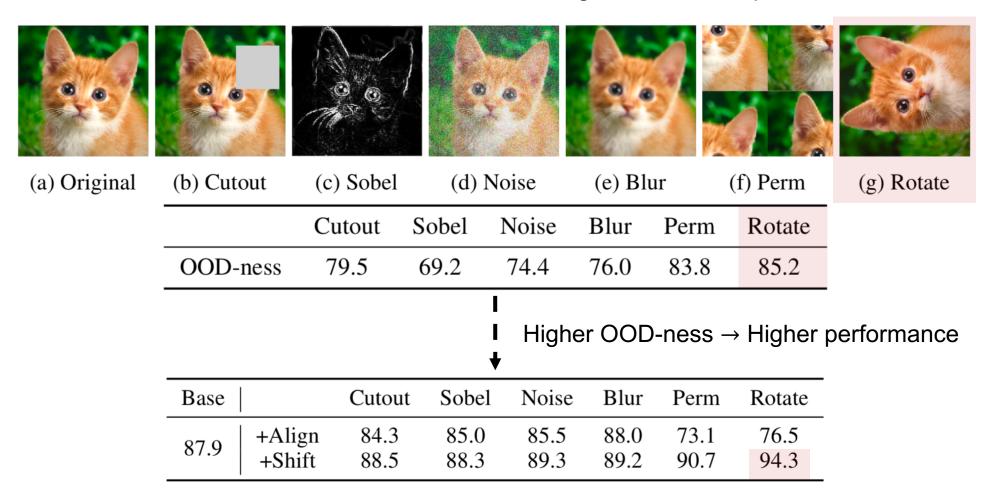
(b) Unlabeled ImageNet-30

			ImageNet-30 \rightarrow								
Method	Network	CUB-200	Dogs	Pets	Flowers	Food-101	Places-365	Caltech-256	DTD		
Rot [25]	ResNet-18	76.5 ± 0.7	77.2 ± 0.5	70.0 ± 0.5	87.2±0.2	72.7 ± 1.5	52.6±1.4	70.9 ± 0.1	89.9±0.5		
Rot+Trans [25]	ResNet-18	74.5 ± 0.5	77.8 ± 1.1	$70.0{\scriptstyle\pm0.8}$	$86.3{\scriptstyle\pm0.3}$	71.6 ± 1.4	53.1 ± 1.7	$70.0{\pm}0.2$	89.4 ± 0.6		
GOAD [2]	ResNet-18	71.5 ± 1.4	74.3 ± 1.6	65.5 ± 1.3	82.8 ± 1.4	68.7 ± 0.7	51.0 ± 1.1	67.4 ± 0.8	$87.5{\scriptstyle\pm0.8}$		
CSI (ours)	ResNet-18	90.5 ±0.1	97.1 ±0.1	85.2 ±0.2	94.7 ±0.4	89.2 ±0.3	78.3 ±0.3	87.1 ±0.1	96.9 ±0.1		

Experiments: Labeled Multi-class OOD

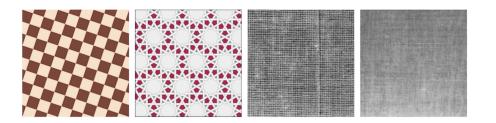
- CSI achieves the state-of-the-art performance in all tested scenarios:
 - For labeled multi-class OOD detection, outperforms prior methods in every OOD datasets

(a) Labeled CIFAR-10


				CIFAR10 \rightarrow								
Train method	Test acc.	ECE	SVHN	LSUN	ImageNet	LSUN (FIX)	ImageNet (FIX)	CIFAR100	Interp.			
Cross Entropy	93.0±0.2	6.44±0.2	88.6±0.9	90.7±0.5	88.3±0.6	87.5±0.3	87.4±0.3	85.8±0.3	75.4 ± 0.7			
SupCLR [30]	$93.8{\scriptstyle\pm0.1}$	$5.56{\scriptstyle\pm0.1}$	$97.3{\scriptstyle\pm0.1}$	$92.8{\scriptstyle\pm0.5}$	91.4 ± 1.2	91.6 ± 1.5	90.5 ± 0.5	88.6 ± 0.2	$75.7{\scriptstyle\pm0.1}$			
CSI (ours) CSI-ens (ours)					96.2 ± 0.4 97.6 ±0.3	$92.1{\pm}0.5$ $93.5{\pm}0.4$	$92.4{\pm}0.0$ $94.0{\pm}0.1$	90.5 ± 0.1 92.2 ± 0.1	78.5 ± 0.2 80.1 ±0.3			

(b) Labeled ImageNet-30

				ImageNet-30 \rightarrow							
Train method	Test acc.	ECE	CUB-200	Dogs	Pets	Flowers	Food-101	Places-365	Caltech-256	DTD	
Cross Entropy	94.3	5.08	88.0	96.7	95.0	89.7	79.8	90.5	90.6	90.1	
SupCLR [30]	96.9	3.12	86.3	95.6	94.2	92.2	81.2	89.7	90.2	92.1	
CSI (ours)	97.0	2.61	93.4	97.7	96.9	96.0	87.0	92.5	91.9	93.7	
CSI-ens (ours)	97.8	2.19	94.6	98.3	97.4	96.2	88.9	94.0	93.2	97.4	


Experiments: Ablation study

- We verified the effectiveness of shifting transformation selection scheme
 - Higher OOD-ness valued transformation leads to higher detection performance

Experiments: Ablation study

- We verified the effectiveness of shifting transformation selection scheme
 - Higher OOD-ness valued transformation leads to higher detection performance
 - Our method works on rotation-invariant datasets i.e., rotation is not shifting transformation

(a) OC	D-ness		(b) AURC	OC
Rot.	Noise	Base	CSI(R)	CSI(N)
50.6	75.7	70.3	65.9	80.1

We also verified the effectiveness of each component

	(a) Trainir	ng object	tive			(b) D	etection	n score	
	SimCLR	Con.	Cls.	AUROC		Con.	Cls.	Ensem.	AUROC
$\mathcal{L}_{\texttt{SimCLR}}$ (2)	✓	-	-	87.9	s_{con} (6)	✓	-	-	91.3
$\mathcal{L}_{ exttt{con-SI}}$ (3)	\checkmark	\checkmark	-	91.6	$s_{\mathtt{con-SI}}$ (7)	\checkmark	-	\checkmark	93.3
$\mathcal{L}_{ t cls-SI}$ (4)	-	-	\checkmark	88.6	$s_{ t cls-SI}$ (8)	-	\checkmark	\checkmark	93.8
$\mathcal{L}_{\texttt{CSI}}$ (5)	✓	✓	✓	94.3	s_{CSI} (9)	✓	✓	\checkmark	94.3

Conclusion

- We propose Contrasting Shifted Instances (CSI) for OOD detection
 - We extend the power of contrastive learning for OOD detection
 - We further improve the OOD detection by utilizing shifting transformations

CSI shows outstanding performance under various OOD detection scenarios

We believe CSI would guide various future directions in OOD detection & self-supervised learning as an important baseline.

Thank you for your attention ©

Paper: arxiv.org/abs/2007.08176

Code: https://github.com/alinlab/CSI