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CSI achieves the state-of-the-art performance for all tested scenarios:
(1) unlabeled one-class, (2) unlabeled multi-class, (3) labeled multi-class

Measure the (a) OOD-ness and (b) OOD detection performance applied on 
CSI for various transformations (rotation is the best for CIFAR-10)

(a) OOD-ness of various transformations

(b) OOD detection performance of various transformations, applied on CSI

The best shifting transformation depends on the datasets (e.g., for textile)

TL;DR. We propose a novel contrastive learning scheme for out-of-distribution (OOD) detection, 
which contrasts hard (distribution-shifting) augmentations to improve in-vs-out discriminability

Paper: https://arxiv.org/abs/2007.08176
Code: https://github.com/alinlab/CSI

Effects of Shifting Transformations

Open question. Which transformation should be (or not be) contrasted?

Hard (distribution-shifting) augmentations (e.g., rotation)
• …was known to be harmful and unused for standard contrastive learning
• …turns out to be effective for OOD detection!

Intuition. Distributionally-shifted samples are “nearby, but not too nearby” 
outliers, hence help the model to discriminate in- vs. out-of-distribution

Representation learning. Contrast the distributionally-shifted samples of 
itself in addition to the different samples
• contrast: use shifted samples a negative for contrastive learning
• classify: train an auxiliary classifier for transformations (as in [1])

Detection score. For a given sample !, we define the detection score "#$%
for contrastive representation as a combination of two features:
• cosine similarity to the nearest training sample in {!'}
• norm of the representation )(!)

We further improve the score by incorporating shifting transformations:
• "#$%,-.: Ensemble "#$% over the shifting transformations
• "#/0,-.: Confidence of the auxiliary transformation classifier

OOD-ness: How to choose the shifting transformation? We choose 
the most OOD-like yet semantically meaningful transformation, measured 
by the AUROC between original vs transformed samples

Extension to confident-calibrated classifiers. We also adapt CSI for 
supervised contrastive learning (SupCLR) [3] to calibrate classifiers

Out-of-distribution (OOD) (novelty, or anomaly) detection is a task of 
identifying whether a given sample belongs to the data distribution 

General approach. Most recent approaches tackle the problem 
• by learning a representation 12(⋅) from the data distribution
• then define a detection score "(⋅) upon the learned representation

Motivation. Inspired by the recent success of self-supervised learning for 
OOD detection [1], we aim to utilize the power of contrastive learning, the 
state-of-the-art method for representation learning [2]

Contribution. We propose (a) new contrastive learning scheme and (b) 
new detection score which utilizes the learned contrastive representation

[1] Hendrycks et al. “Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty”. NeurIPS 2019.
[2] Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. ICML 2020.
[3] Khosla et al. “Supervised Contrastive Learning”. NeurIPS 2020.
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Contrastive Learning
Contrastive learning encodes the inductive bias of data by pulling similar 
samples (positives) and pushing the dissimilar samples (negatives)

We consider simple contrastive learning (SimCLR) [2]:
• pull the same samples but with different augmentations (!4, !5)
• push the different samples in the batch {!6} for 7 ≠ 9

For representation )(!) of a sample !, SimCLR loss is given by:
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