Training CNNs with
Selective Allocation of Channels

Jongheon Jeong?! Jinwoo Shint?

1 Korea Advanced Institute of Science and Technology (KAIST)
2AITRICS

ICML 2019



Recent Advances in CNN Architectures

« Larger model, better accuracy — "efficient” architecture design

ImageNet accuracy (%)

80 A Efﬁc|entNet_B1 ...... X Cept|on ..........................
[ ok *

. ShuffleNet-vZ 5 -

75 s Condensem ......... ...... A
C * S : y &
MoblleNet-vz AR

:*: : A : e
L ResNet

70 _...MQ.b.Il’.iN.at-.\/.l.....5..;.... liveiiniin. ] O- DenseNet |

- - ResNeXt
PR ' 1 PR T T T A
10 100

# Parameters (x10°)



Recent Advances in CNN Architectures

« Larger model, better accuracy — "efficient” architecture design
* Motivation: Current CNN design typically focus on static layers

80 -EfﬁC|entNetB1 ...... X Cept|on
-~ [ ik *x B
S R |
&
5 S ShuferNet v2 5 Y AR
§ 75 e e Condense[\kf ......... ...... :
-6 I . * : : . y . . . o
< MoblleNet-VZ S A
(@) * A - i S
g L o ResNet
= 70 _...Mg.b.llQN..e.t..\./.l.....g..g.... ot ] O- DenseNet |.

CF 7 [ ResNex
PR T S T | L : P S T T T
10 100

# Parameters (x10°)



“Static” Layers?

« Current convolutional layers allocate parameters uniformly across channels
« “Static”: The allocation is fixed until the end of training

“parameters”

“channels” W “filters”

X ( ) Conv(X; W)

X < ’




Channel Inefficiency in “Static” CNNs

« Current convolutional layers allocate parameters uniformly across channels
« “Static”: The allocation is fixed until the end of training

- What if the layer contains unnecessary channels to compute?
* The parameters allocated for those channels can hardly utilized

unnecessary

X

more computation

needed

<

\%%

Conv(X; W)




Channel Inefficiency in “Static” CNNs

« Current convolutional layers allocate parameters uniformly across channels
« “Static”: The allocation is fixed until the end of training

- What if the layer contains unnecessary channels to compute?
* The parameters allocated for those channels can hardly utilized

* Moreover, # channels are usually set without much care in recent CNNs
« Can we utilize them in training for efficiency?

- e
. B 4
o s 5
. A
h ; ;
v b h
N . .
h . .
. .
H . H
o e H ks (x)
e © o0 0 o0 0 @ o 0 o (") 13 w0 o o o w0 v} o ~ o~ ~ ~ ~
< & by 8 > - o b3 o ~ ~ ~ ~ ~ ~ ~ o ) ) 0 vl Il wn Il ) vl Pl n Py P — — - -
g ~ 2 4 % ) ) J o~ — ] - - - — = a ~ ~ ~N ~ ~ ~ ~ ~ ~ ~ ~ 2] w wn i wn ) Y- o
o = = = = = = o - = - = = - & = n . = - - = ~ n = = a = = - = A b=
- = = = = = > > = = = = = = = = = = = = > > = = =]
— c c c c c < o = =
—PIZP e PIsPPIsPISPIS IS PPISPIZPIE P ISP ISP ISP SIS PSP ZPPISE IS PPIS IS PIS IS PISPIEPIE IS PPIS I PSPPI ISPPIS PSPPI S P 2P
S -4 ; ‘: ; ; ; : S (=] <o =} ] o =1 o S o 8 8 8 < o <o 8 =} ] o S o =1 S o ] = R
o m m m o m L=} m m m ™| m m m m o m 22 ] m m o
~ L3 > > > = > > 2 =< 2 = < > 7 > > > > = 2 > > ! =< = < =< = 2
= o m " ™ m - o A - 3 - - o e ) ™ m ™ m - m o m (2] ™ m | m o ™ o0 ™
m o i
-— (NN [ SN D SN D S B S D SN D S R S D SN D SN D SN R SN R S D SN G SN D SN G S G SR R S R S D SR D S D S R SR R SN R SRR G SR D SN R SRR B SRR D S R S L

* Source: He et al. “Deep Residual Learning for Image Recognition”, CVPR 2016



Framework: Training with “Dynamic” Re-wiring

* ILdea: Incorporating function-preserving operations on channels

* Are-wiring operation f can be called at any time in training

e “function-preserving”
Conv(f(X); W) ~ Conv(X; W)
\%%
./ x ( r \
A\ ,




Framework: Training with “Dynamic” Re-wiring

* ILdea: Incorporating function-preserving operations on channels

* A re-wiring operation f can be called at any time in training
« Connectivity is updated without affecting the overall training

(‘

X 4

Re-wire

f

\%%

-

7

“function-preserving”

Conv(f(X); W) = Conv(X; W)

\%%




Framework: Training with “Dynamic” Re-wiring

* ILdea: Incorporating function-preserving operations on channels

* Are-wiring operation f can be called at any time in training
« Connectivity is updated without affecting the overall training
« Manipulation on channels rather than parameters — architecture-agnostic

4 Re-wire “function-preserving”
_f> Conv(f(X); W) = Conv(X; W)
\%% \%%
\_ X 4 A 4 A
AN
— X < | | o —




Selective Convolutional Layer

- Idea: Incorporating function-preserving operations on channels

« Two re-wiring operations: dealloc & realloc
1. dealloc; Release unimportant channels — pruning parameters
2. realloc: Replicate important channels — re-using the pruned parameter

dealloc realloc




Selective Convolutional Layer

* Two operations during training: dealloc & realloc

1. Channel de-allocation (dealloc): Release “unimportant” channels
* Drops unimportant channels based on a measure ||A _;||2 we defined

' X 4 \
H dealloc
. X < .
I \ J
A—i>ﬁﬁ’éﬁ%—>®ﬁﬂ§@® W € ROXIX K

11



Selective Convolutional Layer

* Two operations during training: dealloc & realloc

1. Channel de-allocation (dealloc): Release “unimportant” channels
* Drops unimportant channels based on a measure ||A _;||2 we defined
* Equivalent to pruning parameters corresponding to the de-allocated channels

Z'—»

H dealloc

S e — S




Selective Convolutional Layer

* Two operations during training: dealloc & realloc

1. Channel de-allocation (dealloc): Release “unimportant” channels
* Drops unimportant channels based on a measure ||A _;||2 we defined
* Equivalent to pruning parameters corresponding to the de-allocated channels
« Key point:dealloc has to be function-preserving:
Conv(dealloc(X); W) = Conv(X; W)

Z'—»

X
H dealloc
—— X <

IA%\ I = |

2 o — TRENNEN




Selective Convolutional Layer X
H
* Two operations during training: dealloc & realloc W
« Key point:dealloc has to be function-preserving Ji 7
Conv(dealloc(X); W) ~ Conv(X; W) 12—l TFrErTeD

*  We measure expected channel damage for channel importance

A—z’ 5 L

=— ZEX [Conv(X; W) — Conv(X; W_;)]. .o € R

h,w original after pruning channel i

« Difference after pruning channel i — function-preserving property
* The value is averaged over the spatial dimension h, w
« A € RI*O: Expected Channel Damage Matrix (ECDM)

14



Selective Convolutional Layer X
H
* Two operations during training: dealloc & realloc W
« Key point:dealloc has to be function-preserving Ji 7
Conv(dealloc(X); W) ~ Conv(X; W) 12—l TFrErTeD

*  We measure expected channel damage for channel importance

A—z’ 5 L

=— ZEX [Conv(X; W) — Conv(X; W_;)]. .o € R

h,w original after pruning channel i

« Difference after pruning channel i — function-preserving property
* The value is averaged over the spatial dimension h, w
« A € RI*O: Expected Channel Damage Matrix (ECDM)

« Challenge: Computing A_; requires a marginalization over X “

15



71—>

. . X
Selective Convolutional Layer i
W
* Two operations during training: dealloc & realloc i ;
* We measure expected channel damage for channel importance 1A—ilof TPrerTen
1
A_, = — ZEX [Conv.(?(; W) — Conv().(; W_i)];.,h,w c RY
h,w original after pruning channel i
« Challenge: Computing A_; requires a marginalization over X
N
« Idea: Use a BatchNorm layer to approximate A_; 5| vl
1. BatchNorm(z) ~ N(8,~?): B,~ are BatchNorm parameters
2. X = ReLU(BN(Y)): A common design in modern CNNs X
K2
A_; ~ (‘%‘\@\/( & ) + 52'(1%\/( bi )) szk
R |7l X 7] =1
p.d.,f. activity level }:.d.f. magnitude
\. y,

16



Selective Convolutional Layer

* Two operations during training: dealloc & realloc
« Challenge: Computing A_; requires a marginalization over X

(

\_

« Idea: Use a BatchNorm layer to approximate A_; _

1. BatchNorm(x) ~ N(3,~?): B,~ are BatchNorm parameters
2. X = ReLU(BN(Y)): A common design in modern CNNs

Are those assumptions realistic in practice?

-2 -1 0 1 2
Pre-activation

(a) Non-boundary pixels

Pre-activation

(b) Boundary pixels

Std. dev

N
!
#
x O‘qoo
s
v ;M,_f

Mean

(c) Initialized randomly

) A voaf
04 K

-1.5 -1.0 -0.5 0
Mean

3

L

(d) Trained to converge

17



Selective Convolutional Layer

* Two operations during training: dealloc & realloc
« Challenge: Computing A_; requires a marginalization over X

(

\_

Are those assumptions realistic in practice?
1. For afixed channel, most of the pixel distributions are unimodal (
2. The means and variances are clustered for each channel (d)
3. The trend still exists even the model re-initialized (c, d)

Std. dev
~N
!
o
x O‘qoo
i
;j*go‘ﬁu,

] § . i 8 g iy T N N X N X
-2 -1 0 1 2 -2 -1 0 1 2 -10 -8 -6 -4 =2
Pre-activation Pre-activation Mean

(a) Non-boundary pixels (b) Boundary pixels (c) Initialized randomly

b 1l A
a)
X
2
R
N 2 e
T e
(d) Trained to converge )

18



Selective Convolutional Layer

* Two operations during training: dealloc & realloc

« Challenge: Computing A_; requires a marginalization over X

(

* Are those assumptions realistic in practice?

* Two properties of CNN can be responsible:
1. CLT from the linear, weighted summing nature of convolution
2. Translation-equivariance of convolution on spatial dimensions

Std. dev
N
H
x o

A
3

\_

....... o ‘
LI x
............. 1 - x i
-2 -.1- 6 1 = 2 -iz -.1 5 :Whh 2 910. -8 ' -6 ' -4 ' -2 ' 0 ' 2
Pre-activation Pre-activation Mean
(a) Non-boundary pixels (b) Boundary pixels (c) Initialized randomly

) A voaf
04 K

3

L

(d) Trained to converge

19



Selective Convolutional Layer

* Two operations during training: dealloc & realloc

1. Channel de-allocation (dealloc): Release “unimportant” channels
* Drops unimportant channels based on a measure ||A _;||2 we defined
* Equivalent to pruning parameters corresponding to the de-allocated channels
« Key point:dealloc has to be function-preserving

i—»

X
H dealloc

5 e —




Selective Convolutional Layer

* Two operations during training: dealloc & realloc
2. Channel re-allocation (realloc): Replicate “important” channels into the released area

( )

X < ’

\ y

i—»

X

H realloc
W

I

» Channels with high [|A_;||2 are copied into the de-allocated channels

« Challenge: Naively copying a channel in does NOT give any benefit .
* Due to the linearity of convolutional layers
« A convolutional filter will see the exact same patch of the two images



Selective Convolutional Layer

* Two operations during training: dealloc & realloc
2. Channel re-allocation (realloc): Replicate “important” channels into the released area

( )

i—»

H realloc

I spatial shifting

» Channels with high [|A—;|[2 are copied, but with spatial shifting bias b = (b", ")

learnable
shift (X, b),_ Z Z X o m

n=1m=1 “bilinear interpolation kernel”

xmax((),l—]a:—n—i—th x max (0,1 — [y —m + 0"])

22



Selective Convolutional Layer

* Two operations during training: dealloc & realloc
2. Channel re-allocation (realloc): Replicate “important” channels into the released area

( )

i—»

H realloc

I spatial shifting




Selective Convolutional Layer

* Two operations during training: dealloc & realloc

2. Channel re-allocation (realloc): Replicate “important” channels into the released area

i—»

-

H realloc

I spatial shifting

\

“kernel enlarging effect”

24



Selective Convolutional Layer

* Framework: Incorporating re-wiring operations in training

* Two operations during training: dealloc & realloc

* Dynamic re-wiring of parameters — selective kernel expansion

dealloc

.....
0
s,
b

»
.
.
fun

> N i
.....

B
v,
N

> NET el
......

Ve
‘e
0
an

> N

»
.
.
un

> Crsdn

realloc

25



Selective Convolutional Layer

* Framework: Incorporating re-wiring operations in training
* Two operations during training: dealloc & realloc
« Dynamic re-wiring of parameters — selective kernel expansion

dealloc realloc

26



Selective Convolutional Layer

* Framework: Incorporating re-wiring operations in training

« Two operations during training:dealloc & realloc

» Flexible training: model reduction «= accuracy improvement

15

dealloc-only

-
o

# Parameters (x10°)

(6)]

-~ Baseline
-o- SelectConv

0

50

100

150 200

Training epochs

250 300

On-demand

—)

Test loss

0.50 1

o

~

(&) ]
1

©
~
o

dealloc+realloc

o
w
a

o

w

o
1

— Baseline

— SelectConv

50

100

Training epochs

150

200

250



Experiments: Improving Modern CNNs

« Selective convolution can be readily applied to various existing CNNs

* Training each convolutional layer with dealloc + realloc

Error rates (%)

Model Params Method CIFAR-10 CIFAR-100 Fashion-MNIST Tiny-ImageNet
DenseNet-40 021M Baseline 6.62+0.15 29.9+0.1 5.03+0.07 45.84+0.2
(bottleneck, k = 12) : SelectConv  6.09+0.10 (-8.01%) 28.8+0.1(-3.42%) 4.73+0.06 (-5.96%) 44.4+0.2(-3.03%)
DenseNet-100 1 00M Baseline 4.514+0.04 22.84+03 4.7040.06 41.0+0.1
(bottleneck, k = 12) ’ SelectConv  4.29+0.08 (-4.88%) 22.2+0.1 (-2.64%) 4.584+0.05(-2.55%) 39.9+0.3(-2.78%)
ResNet-164 1 66M Baseline 4.23+0.15 21.3+02 4.53+0.04 37.7+0.4
(bottleneck, pre-act) ) SelectConv  3.92+0.14 (-7.33%) 20.9+0.2 (-1.97%) 4.37+0.03(-3.53%) 37.5+0.2(-0.56%)
Nea Baseline 3.62+0.12 18.1+0.1 4.40+0.07 31.7+03
ResNeXt-29 (8 x 64d) - 338M ¢ 1o iConv  3.3940.14 (-6.36%)  17.6+40.1 (-2.92%) 4.27+4006 (-2.95%) 31.4+0.3 (-0.88%)

(top) Results on CIFAR-10/100, FMNIST and Tiny-ImageNet
(right) Results on ImageNet dataset

Model Params Method Error (%)
DenseNet-121 Baseline 24.7
(k= 32) 7.95M SelectConv 244
ResNet-50 Baseline 23.9
(bottleneck) 22.8M SelectConv 234

28



Experiments: Improving Modern CNNs

« Selective convolution can be readily applied to various existing CNNs

Reduction in error rates across all the tested architectures

Error rates (%)

Model Params Method CIFAR-10 CIFAR-100 Fashion-MNIST Tiny-ImageNet
DenseNet-40 021M Baseline 6.62+0.15 29.9+0.1 5.03+0.07 45.84+0.2
(bottleneck, k£ = 12) : SelectConv  6.09+0.10 (-8.01%) 28.8+0.1 (-3.42%) 4.73+0.06 (-5.96%) 44.4+0.2(-3.03%)
DenseNet-100 1 00M Baseline 4.5140.04 22.8403 4.704+0.06 41.0+0.1
(bottleneck, k£ = 12) ) SelectConv 4.29+0.08 (-4.88%) 22.2+0.1 (-2.64%) 4.58+0.05 (-2.55%) 39.9+0.3(-2.78%)
ResNet-164 1 66M Baseline 4.2340.15 21.3+0.2 4.5340.04 37.7+0.4
(bottleneck, pre-act) ) SelectConv 3.92+0.14 (-7.33%) 20.9+0.2 (-1.97%) 4.37+0.03(-3.53%) 37.5+0.2(-0.56%)
NaYr Baseline 3.62+0.12 18.1+0.1 4.40+0.07 31.7+03
ResNeX1-29 (8 x 64d) - 338M g 1 iConv  3.39+0.14 (-6.36%)  17.6+01 (-2.92%) 4.27+0.06 (-2.95%) 31.4+0.3 (-0.88%)
Model Params Method Error (%)
: k= 32) ' SelectConv 24.4
(right) Results on ImageNet dataset i{ N — o
o esNet- aseline .
¢ Remark: 23.6% — 23.0% = 51 more layers (official ResNet) (bottleneck) 228M  qiectConv 234

29



Experiments: Mobile-targeted Architectures

« Selective convolution can further improve the “already-efficient” CondenseNet-182
 Training withdealloc - model compression

« ECDM-based de-allocation outperforms existing dynamic channel pruning scheme
* Replacing LGC to SConv — further compression

80 F e EfﬁCIentNet-B1 ...... X ceptlon .....................
= | Here * * Model (CIFAR-10) Params FLOPs Error (%)
3 IR ' ResNet-1001 16.IM  2,357M 4.62
S o5l _ySweNeto” WideResNet-28-10 36.5M  5248M 417
S  Condenseh™t| | ResNeXt-29 (16 x 64d) 68.1M  10,704M 3.58
2 [MobieNetvz . | | VGGNet-Slim [2] 2.30M 391M 6.20
e [ * i/ Creme ResNet-164-Slim [2] 1.10M 275M 5.27
= 70 _M0b||;Net'V1 .......... ..... X gzrs];eel;l(?t . CondenseNet-LGC-182 [1] 4 20M 513M 376
[ BEEE | CondenseNet-SConv-182 3.24M 422M 3.50
10 100

# Parameters (x10°)

[1] Gao Huang et al. Condensenet: An efficient densenet using learned group convolutions. CVPR 2018.
[2] Zhuang Liu et al. Learning efficient convolutional networks through network slimming. ICCV 2017.



Summary

* A new functionality: channel-selectivity
* Dynamically choosing channels toward selective expansion of kernels

 We propose selective convolution = convolution + channel-selectivity
1. Generic, easy to use: applicable to any kind of CNN
2. Single-pass: no post-processing/re-training
3. On-demand: accuracy improvement <= model compression

* We define a new metric of channel importance: expected channel damage

31



