
Training CNNs with
Selective Allocation of Channels

Jongheon Jeong1 Jinwoo Shin1,2

ICML 2019

1 Korea Advanced Institute of Science and Technology (KAIST)
2 AITRICS

Recent Advances in CNN Architectures
• Larger model, better accuracy → “efficient” architecture design

2

Recent Advances in CNN Architectures
• Larger model, better accuracy → “efficient” architecture design
• Motivation: Current CNN design typically focus on static layers

3

“Static” Layers?
• Current convolutional layers allocate parameters uniformly across channels
• “Static”: The allocation is fixed until the end of training

4

“channels”

“parameters”

“filters”

Channel Inefficiency in “Static” CNNs
• Current convolutional layers allocate parameters uniformly across channels
• “Static”: The allocation is fixed until the end of training
• What if the layer contains unnecessary channels to compute?

• The parameters allocated for those channels can hardly utilized

5

more computation
needed

unnecessary

Channel Inefficiency in “Static” CNNs
• Current convolutional layers allocate parameters uniformly across channels
• “Static”: The allocation is fixed until the end of training
• What if the layer contains unnecessary channels to compute?

• The parameters allocated for those channels can hardly utilized

• Moreover, # channels are usually set without much care in recent CNNs
• Can we utilize them in training for efficiency?

6
* Source: He et al. “Deep Residual Learning for Image Recognition”, CVPR 2016

64 128 256 512

Framework: Training with “Dynamic” Re-wiring

• Idea: Incorporating function-preserving operations on channels

• A re-wiring operation can be called at any time in training

7

Re-wire “function-preserving”

Framework: Training with “Dynamic” Re-wiring

• Idea: Incorporating function-preserving operations on channels

• A re-wiring operation can be called at any time in training
• Connectivity is updated without affecting the overall training

8

Re-wire “function-preserving”

Framework: Training with “Dynamic” Re-wiring

• Idea: Incorporating function-preserving operations on channels

• A re-wiring operation can be called at any time in training
• Connectivity is updated without affecting the overall training
• Manipulation on channels rather than parameters → architecture-agnostic

9

Re-wire “function-preserving”

Selective Convolutional Layer

• Idea: Incorporating function-preserving operations on channels

• Two re-wiring operations: &
1. : Release unimportant channels → pruning parameters
2. : Replicate important channels → re-using the pruned parameter

10

Selective Convolutional Layer
• Two operations during training: &

1. Channel de-allocation (): Release “unimportant” channels
• Drops unimportant channels based on a measure we defined

11

Selective Convolutional Layer
• Two operations during training: &

1. Channel de-allocation (): Release “unimportant” channels
• Drops unimportant channels based on a measure we defined
• Equivalent to pruning parameters corresponding to the de-allocated channels

12

Selective Convolutional Layer
• Two operations during training: &

1. Channel de-allocation (): Release “unimportant” channels
• Drops unimportant channels based on a measure we defined
• Equivalent to pruning parameters corresponding to the de-allocated channels
• Key point: has to be function-preserving:

13

Conv(dealloc(X);W) ⇡ Conv(X;W)
<latexit sha1_base64="QRl0X3Y9Q5pgVis/KVbRej/fzoY=">AAADK3icjVFBS9xAFP6MtWq07doeewldBL0sWRUqeBG99Gih6y4YkcnsrBt2kgmTiShhf5L/xJuHYum10F57rYe+mWZFdynthCTvfe/7vpk3L85lUpgwvJvz5p8tPF9cWvZXVl+8fNVYe31cqFJz0eFKKt2LWSFkkomOSYwUvVwLlsZSdOPRoa13L4QuEpV9Mle5OE3ZeZYMEs4MQWeNQZQyM9Rpdaiyi/FGZMSlMabqCyal4gTYcjyoeuPNvWCSdMebfsTyXKtLf0r/QH/CDs4azbAVuhXMBu06aKJeR6rxGRH6UOAokUIgg6FYgqGg5wRthMgJO0VFmKYocXWBMXzSlsQSxGCEjuh7TtlJjWaUW8/CqTntIunVpAywThpFPE2x3S1w9dI5W/Rv3pXztGe7on9ce6WEGgwJ/Zduwvxfne3FYIBd10NCPeUOsd3x2qV0t2JPHjzqypBDTpiN+1TXFHOnnNxz4DSF693eLXP1745pUZvzmlvihz0lDbg9Pc7Z4Hir1d5ubX3cae4f1KNewlu8wwbN8z328QFH6JD3DX7iF+69a+/W++J9/UP15mrNGzxZ3rffhd66MA==</latexit>

• Two operations during training: &
• Key point: has to be function-preserving

• We measure expected channel damage for channel importance

• Difference after pruning channel 𝑖 → function-preserving property
• The value is averaged over the spatial dimension ℎ, 𝑤
• : Expected Channel Damage Matrix (ECDM)

Selective Convolutional Layer

14

original after pruning channel 𝒊

Conv(dealloc(X);W) ⇡ Conv(X;W)
<latexit sha1_base64="QRl0X3Y9Q5pgVis/KVbRej/fzoY=">AAADK3icjVFBS9xAFP6MtWq07doeewldBL0sWRUqeBG99Gih6y4YkcnsrBt2kgmTiShhf5L/xJuHYum10F57rYe+mWZFdynthCTvfe/7vpk3L85lUpgwvJvz5p8tPF9cWvZXVl+8fNVYe31cqFJz0eFKKt2LWSFkkomOSYwUvVwLlsZSdOPRoa13L4QuEpV9Mle5OE3ZeZYMEs4MQWeNQZQyM9Rpdaiyi/FGZMSlMabqCyal4gTYcjyoeuPNvWCSdMebfsTyXKtLf0r/QH/CDs4azbAVuhXMBu06aKJeR6rxGRH6UOAokUIgg6FYgqGg5wRthMgJO0VFmKYocXWBMXzSlsQSxGCEjuh7TtlJjWaUW8/CqTntIunVpAywThpFPE2x3S1w9dI5W/Rv3pXztGe7on9ce6WEGgwJ/Zduwvxfne3FYIBd10NCPeUOsd3x2qV0t2JPHjzqypBDTpiN+1TXFHOnnNxz4DSF693eLXP1745pUZvzmlvihz0lDbg9Pc7Z4Hir1d5ubX3cae4f1KNewlu8wwbN8z328QFH6JD3DX7iF+69a+/W++J9/UP15mrNGzxZ3rffhd66MA==</latexit>

• Two operations during training: &
• Key point: has to be function-preserving

• We measure expected channel damage for channel importance

• Difference after pruning channel 𝑖 → function-preserving property
• The value is averaged over the spatial dimension ℎ, 𝑤
• : Expected Channel Damage Matrix (ECDM)

• Challenge: Computing requires a marginalization over

Selective Convolutional Layer

15

original after pruning channel 𝒊

Conv(dealloc(X);W) ⇡ Conv(X;W)
<latexit sha1_base64="QRl0X3Y9Q5pgVis/KVbRej/fzoY=">AAADK3icjVFBS9xAFP6MtWq07doeewldBL0sWRUqeBG99Gih6y4YkcnsrBt2kgmTiShhf5L/xJuHYum10F57rYe+mWZFdynthCTvfe/7vpk3L85lUpgwvJvz5p8tPF9cWvZXVl+8fNVYe31cqFJz0eFKKt2LWSFkkomOSYwUvVwLlsZSdOPRoa13L4QuEpV9Mle5OE3ZeZYMEs4MQWeNQZQyM9Rpdaiyi/FGZMSlMabqCyal4gTYcjyoeuPNvWCSdMebfsTyXKtLf0r/QH/CDs4azbAVuhXMBu06aKJeR6rxGRH6UOAokUIgg6FYgqGg5wRthMgJO0VFmKYocXWBMXzSlsQSxGCEjuh7TtlJjWaUW8/CqTntIunVpAywThpFPE2x3S1w9dI5W/Rv3pXztGe7on9ce6WEGgwJ/Zduwvxfne3FYIBd10NCPeUOsd3x2qV0t2JPHjzqypBDTpiN+1TXFHOnnNxz4DSF693eLXP1745pUZvzmlvihz0lDbg9Pc7Z4Hir1d5ubX3cae4f1KNewlu8wwbN8z328QFH6JD3DX7iF+69a+/W++J9/UP15mrNGzxZ3rffhd66MA==</latexit>

• Two operations during training: &
• We measure expected channel damage for channel importance

• Challenge: Computing requires a marginalization over

• Idea: Use a BatchNorm layer to approximate
1. : are BatchNorm parameters
2. : A common design in modern CNNs

Selective Convolutional Layer

16

original after pruning channel 𝒊

p.d.f. c.d.f.

• Two operations during training: &
• Challenge: Computing requires a marginalization over

• Idea: Use a BatchNorm layer to approximate
1. : are BatchNorm parameters
2. : A common design in modern CNNs

• Are those assumptions realistic in practice?

Selective Convolutional Layer

17

• Two operations during training: &
• Challenge: Computing requires a marginalization over

• Are those assumptions realistic in practice?
1. For a fixed channel, most of the pixel distributions are unimodal (a)
2. The means and variances are clustered for each channel (d)
3. The trend still exists even the model re-initialized (c, d)

Selective Convolutional Layer

18

• Two operations during training: &
• Challenge: Computing requires a marginalization over

• Are those assumptions realistic in practice?
• Two properties of CNN can be responsible:

1. CLT from the linear, weighted summing nature of convolution
2. Translation-equivariance of convolution on spatial dimensions

Selective Convolutional Layer

19

Selective Convolutional Layer
• Two operations during training: &

1. Channel de-allocation (): Release “unimportant” channels
• Drops unimportant channels based on a measure we defined
• Equivalent to pruning parameters corresponding to the de-allocated channels
• Key point: has to be function-preserving

20

Selective Convolutional Layer
• Two operations during training: &

2. Channel re-allocation (): Replicate “important” channels into the released area

• Channels with high are copied into the de-allocated channels
• Challenge: Naïvely copying a channel in does NOT give any benefit

• Due to the linearity of convolutional layers
• A convolutional filter will see the exact same patch of the two images

21

Selective Convolutional Layer
• Two operations during training: &

2. Channel re-allocation (): Replicate “important” channels into the released area

• Channels with high are copied, but with spatial shifting bias

22

“bilinear interpolation kernel”

learnable

spatial shifting

Selective Convolutional Layer
• Two operations during training: &

2. Channel re-allocation (): Replicate “important” channels into the released area

23

spatial shifting

Selective Convolutional Layer
• Two operations during training: &

2. Channel re-allocation (): Replicate “important” channels into the released area

24
“kernel enlarging effect”

spatial shifting

Selective Convolutional Layer
• Framework: Incorporating re-wiring operations in training
• Two operations during training: &
• Dynamic re-wiring of parameters → selective kernel expansion

25

Selective Convolutional Layer
• Framework: Incorporating re-wiring operations in training
• Two operations during training: &
• Dynamic re-wiring of parameters → selective kernel expansion

26

Selective Convolutional Layer
• Framework: Incorporating re-wiring operations in training
• Two operations during training: &
• Flexible training: model reduction ⟷ accuracy improvement

27

On-demand

Experiments: Improving Modern CNNs
• Selective convolution can be readily applied to various existing CNNs
• Training each convolutional layer with

• (top) Results on CIFAR-10/100, FMNIST and Tiny-ImageNet
• (right) Results on ImageNet dataset

28

Experiments: Improving Modern CNNs
• Selective convolution can be readily applied to various existing CNNs
• Reduction in error rates across all the tested architectures

• (top) Results on CIFAR-10/100, FMNIST and Tiny-ImageNet
• (right) Results on ImageNet dataset

• Remark: 23.6% → 23.0% ≈ 51 more layers (official ResNet)

29

Experiments: Mobile-targeted Architectures
• Selective convolution can further improve the “already-efficient” CondenseNet-182
• Training with → model compression
• ECDM-based de-allocation outperforms existing dynamic channel pruning scheme

• Replacing LGC to SConv → further compression

30

Here

[1] Gao Huang et al. Condensenet: An efficient densenet using learned group convolutions. CVPR 2018.
[2] Zhuang Liu et al. Learning efficient convolutional networks through network slimming. ICCV 2017.

Summary
• A new functionality: channel-selectivity

• Dynamically choosing channels toward selective expansion of kernels

• We propose selective convolution = convolution + channel-selectivity
1. Generic, easy to use: applicable to any kind of CNN
2. Single-pass: no post-processing/re-training
3. On-demand: accuracy improvement ⟷ model compression

• We define a new metric of channel importance: expected channel damage

31

Talk@ICML Paper GitHub

