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Recent Advances in CNN Architectures
• Larger model, better accuracy → “efficient” architecture design
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Recent Advances in CNN Architectures
• Larger model, better accuracy → “efficient” architecture design
• Motivation: Current CNN design typically focus on static layers
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“Static” Layers?
• Current convolutional layers allocate parameters uniformly across channels
• “Static”: The allocation is fixed until the end of training
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Channel Inefficiency in “Static” CNNs
• Current convolutional layers allocate parameters uniformly across channels
• “Static”: The allocation is fixed until the end of training
• What if the layer contains unnecessary channels to compute?

• The parameters allocated for those channels can hardly utilized
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Channel Inefficiency in “Static” CNNs
• Current convolutional layers allocate parameters uniformly across channels
• “Static”: The allocation is fixed until the end of training
• What if the layer contains unnecessary channels to compute?

• The parameters allocated for those channels can hardly utilized

• Moreover, # channels are usually set without much care in recent CNNs
• Can we utilize them in training for efficiency?
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* Source: He et al. “Deep Residual Learning for Image Recognition”, CVPR 2016
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Framework: Training with “Dynamic” Re-wiring

• Idea: Incorporating function-preserving operations on channels

• A re-wiring operation    can be called at any time in training
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Framework: Training with “Dynamic” Re-wiring

• Idea: Incorporating function-preserving operations on channels

• A re-wiring operation    can be called at any time in training
• Connectivity is updated without affecting the overall training
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Framework: Training with “Dynamic” Re-wiring

• Idea: Incorporating function-preserving operations on channels

• A re-wiring operation    can be called at any time in training
• Connectivity is updated without affecting the overall training
• Manipulation on channels rather than parameters → architecture-agnostic
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Selective Convolutional Layer

• Idea: Incorporating function-preserving operations on channels

• Two re-wiring operations:                 & 
1. : Release unimportant channels → pruning parameters
2. : Replicate important channels → re-using the pruned parameter

10



Selective Convolutional Layer
• Two operations during training:                 &

1. Channel de-allocation (                ): Release “unimportant” channels 
• Drops unimportant channels based on a measure                we defined
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Selective Convolutional Layer
• Two operations during training:                 &

1. Channel de-allocation (                ): Release “unimportant” channels 
• Drops unimportant channels based on a measure                we defined
• Equivalent to pruning parameters corresponding to the de-allocated channels
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Selective Convolutional Layer
• Two operations during training:                 &

1. Channel de-allocation (                ): Release “unimportant” channels 
• Drops unimportant channels based on a measure                we defined
• Equivalent to pruning parameters corresponding to the de-allocated channels
• Key point:                 has to be function-preserving:
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• Two operations during training:                 &
• Key point:                 has to be function-preserving

• We measure expected channel damage for channel importance

• Difference after pruning channel 𝑖 → function-preserving property
• The value is averaged over the spatial dimension ℎ, 𝑤
• : Expected Channel Damage Matrix (ECDM)

Selective Convolutional Layer

14

original after pruning channel 𝒊

Conv(dealloc(X);W) ⇡ Conv(X;W)
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• Two operations during training:                 &
• Key point:                 has to be function-preserving

• We measure expected channel damage for channel importance

• Difference after pruning channel 𝑖 → function-preserving property
• The value is averaged over the spatial dimension ℎ, 𝑤
• : Expected Channel Damage Matrix (ECDM)

• Challenge: Computing         requires a marginalization over 

Selective Convolutional Layer
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• Two operations during training:                 &
• We measure expected channel damage for channel importance

• Challenge: Computing         requires a marginalization over

• Idea: Use a BatchNorm layer to approximate
1. :         are BatchNorm parameters
2. : A common design in modern CNNs  

Selective Convolutional Layer
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• Two operations during training:                 &
• Challenge: Computing         requires a marginalization over

• Idea: Use a BatchNorm layer to approximate
1. :         are BatchNorm parameters
2. : A common design in modern CNNs 

• Are those assumptions realistic in practice?

Selective Convolutional Layer
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• Two operations during training:                 &
• Challenge: Computing         requires a marginalization over

• Are those assumptions realistic in practice?
1. For a fixed channel, most of the pixel distributions are unimodal (a)
2. The means and variances are clustered for each channel (d)
3. The trend still exists even the model re-initialized (c, d)

Selective Convolutional Layer
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• Two operations during training:                 &
• Challenge: Computing         requires a marginalization over

• Are those assumptions realistic in practice?
• Two properties of CNN can be responsible:

1. CLT from the linear, weighted summing nature of convolution
2. Translation-equivariance of convolution on spatial dimensions

Selective Convolutional Layer

19



Selective Convolutional Layer
• Two operations during training:                 &

1. Channel de-allocation (                ): Release “unimportant” channels 
• Drops unimportant channels based on a measure                we defined
• Equivalent to pruning parameters corresponding to the de-allocated channels
• Key point:                 has to be function-preserving
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Selective Convolutional Layer
• Two operations during training:                 &

2. Channel re-allocation (                ): Replicate “important” channels into the released area

• Channels with high                are copied into the de-allocated channels
• Challenge: Naïvely copying a channel in does NOT give any benefit

• Due to the linearity of convolutional layers
• A convolutional filter will see the exact same patch of the two images
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Selective Convolutional Layer
• Two operations during training:                 &

2. Channel re-allocation (                ): Replicate “important” channels into the released area

• Channels with high                are copied, but with spatial shifting bias
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Selective Convolutional Layer
• Two operations during training:                 &

2. Channel re-allocation (                ): Replicate “important” channels into the released area
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Selective Convolutional Layer
• Two operations during training:                 &

2. Channel re-allocation (                ): Replicate “important” channels into the released area
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Selective Convolutional Layer
• Framework: Incorporating re-wiring operations in training
• Two operations during training:                 & 
• Dynamic re-wiring of parameters → selective kernel expansion
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Selective Convolutional Layer
• Framework: Incorporating re-wiring operations in training
• Two operations during training:                 & 
• Dynamic re-wiring of parameters → selective kernel expansion
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Selective Convolutional Layer
• Framework: Incorporating re-wiring operations in training
• Two operations during training:                 & 
• Flexible training: model reduction ⟷ accuracy improvement
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Experiments: Improving Modern CNNs
• Selective convolution can be readily applied to various existing CNNs
• Training each convolutional layer with

• (top) Results on CIFAR-10/100, FMNIST and Tiny-ImageNet
• (right) Results on ImageNet dataset
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Experiments: Improving Modern CNNs
• Selective convolution can be readily applied to various existing CNNs
• Reduction in error rates across all the tested architectures

• (top) Results on CIFAR-10/100, FMNIST and Tiny-ImageNet
• (right) Results on ImageNet dataset

• Remark: 23.6% → 23.0% ≈ 51 more layers (official ResNet)
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Experiments: Mobile-targeted Architectures
• Selective convolution can further improve the “already-efficient” CondenseNet-182
• Training with                 → model compression
• ECDM-based de-allocation outperforms existing dynamic channel pruning scheme

• Replacing LGC to SConv → further compression
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Here

[1] Gao Huang et al. Condensenet: An efficient densenet using learned group convolutions. CVPR 2018.
[2] Zhuang Liu et al. Learning efficient convolutional networks through network slimming. ICCV 2017.



Summary
• A new functionality: channel-selectivity

• Dynamically choosing channels toward selective expansion of kernels

• We propose selective convolution = convolution + channel-selectivity
1. Generic, easy to use: applicable to any kind of CNN
2. Single-pass: no post-processing/re-training
3. On-demand: accuracy improvement ⟷ model compression

• We define a new metric of channel importance: expected channel damage
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